The in situ dissolution of polished (0001), (101(-)0), and (0001(-)) surfaces of ZnO was studied using Atomic Force Microscopy under alkaline conditions. In aqueous NaOH solution the (0001) plane forms a stepped surface whereas the (0001(-)) plane converts into more stable {101(-)1(-)} planes. Dissolution of the (101(-)0) plane leaves a combination of (0001) and (101(-)1(-)) planes. Dissolution in solutions containing both NaOH and Na(3)citrate causes the (0001) plane steps to increase in number and reduce in height, and cause an overall increase in the rate of dissolution in the [101(-)0] directions. These observations are explained using a mechanism based on edgewise dissolution where the etching rate depends on the number of surface oxygen atoms per zinc atom. Large areas of single index faces (over 50 μm(2)) of (0001) and (0001(-)), suitable for surface chemistry studies, were also generated by chemical dissolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la2047273 | DOI Listing |
J Am Chem Soc
December 2024
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233, P. R. China.
Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetic disorder associated with an elevated risk of life-threatening arrhythmias and progressive ventricular impairment. Risk stratification is essential to prevent major adverse cardiac events (MACE). Our study aimed to investigate the incremental value of strain measured by two-dimensional speckle-tracking echocardiography in predicting MACE in ARVC patients compared to conventional echocardiographic parameters.
View Article and Find Full Text PDFNano Lett
December 2024
Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!