Ly108 (CD352) is a member of the signaling lymphocyte activation molecule (SLAM) family of receptors that signals through SLAM-associated protein (SAP), an SH2 domain protein that can function by the recruitment of Src family kinases or by competition with phosphatases. Ly108 is expressed on a variety of hematopoietic cells, with especially high levels on developing thymocytes. We find that Ly108 is constitutively tyrosine phosphorylated in murine thymi in a SAP- and Fyn kinase-dependent manner. Phosphorylation of Ly108 is rapidly lost after thymocyte disaggregation, suggesting dynamic contact-mediated regulation of Ly108. Similar to recent reports, we find at least three isoforms of Ly108 mRNA and protein in the thymus, which are differentially expressed in the thymi of C57BL/6 and 129S6 mice that express the lupus-resistant and lupus-prone haplotypes of Ly108, respectively. Notably, the recently described novel isoform Ly108-H1 is not expressed in mice having the lupus-prone haplotype of Ly108, but is expressed in C57BL/6 mice. We further provide evidence for differential phosphorylation of these isoforms; the novel Ly108-H1does not undergo tyrosine phosphorylation, suggesting that it functions as a decoy isoform that contributes to the reduced overall phosphorylation of Ly108 seen in C57BL/6 mice. Our study suggests that Ly108 is dynamically regulated in the thymus, shedding light on Ly108 isoform expression and phosphorylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311760 | PMC |
http://dx.doi.org/10.4049/jimmunol.1103226 | DOI Listing |
bioRxiv
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine; Los Angeles, CA 90095.
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (T) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives T conversion to highly cytolytic effectors in T1D, however, remains unclear.
View Article and Find Full Text PDFImmunity
December 2024
Center for Immunology and Hematology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address:
J Immunol
September 2024
Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada.
The role of ICOS in antitumor T cell responses and overall tumor progression has been controversial. In this study, we compared tumor progression in mice lacking ICOS selectively in regulatory T (Treg) cells or in all T cells. Using an experimental melanoma lung metastasis model, we found that Treg cell-specific ICOS knockout reduces the overall tumor burden compared with Cre control mice, with increased CD4+-to-Treg cell and CD8+-to-Treg cell ratios in the tumor.
View Article and Find Full Text PDFDuring chronic infections and tumor progression, CD8 T cells gradually lose their effector functions and become exhausted. These exhausted CD8 T cells are heterogeneous and comprised of different subsets, including self-renewing progenitors that give rise to Ly108 CX3CR1 effector-like cells. Generation of these effector-like cells is essential for the control of chronic infections and tumors, albeit limited.
View Article and Find Full Text PDFImmunohorizons
April 2024
Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan.
The non-Fc-binding anti-CD3 Ab [anti-CD3F(ab')2] can induce graft acceptance depending on the therapeutic window in a rodent heart transplant model. The delayed protocol allows for early graft infiltration of lymphocytes, which may behave in an inhibitory manner. We investigated the most effective protocol for anti-CD3F(ab')2 in sensitized conditions to confirm the evidence for clinical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!