Metabolic switching of BILR 355 in the presence of ritonavir. I. Identifying an unexpected disproportionate human metabolite.

Drug Metab Dispos

Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.

Published: June 2012

11-Ethyl-5,11-dihydro-5-methyl-8-[2-[(1-oxido-4-quinolinyl)oxy] ethyl]-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (BILR 355) is an inhibitor of the human immunodeficiency virus-1. BILR 355 exhibited a nonlinear pharmacokinetic profile and low exposure after oral administration to humans. This article describes the in vitro metabolism of BILR 355, which is correlated with the in vivo nonlinearity findings. Our in vitro studies had demonstrated that BILR 355 was extensively metabolized by cytochrome P450 3A. Thus, BILR 355 was concomitantly administered with ritonavir (RTV) in an attempt to boost systemic exposure, which did occur in humans. In addition, the expectation was that the overall metabolism of BILR 355 would be decreased with concomitant administration of RTV. Subsequent metabolite profiling was performed using human plasma samples obtained from clinical phase Ib studies with concomitant administration of BILR 355 and RTV. A total of 18 metabolites was observed. Their structures were proposed on the basis of high-performance liquid chromatography-tandem mass spectrometry technologies, and 10 metabolites were confirmed by comparison with synthetic standards. We were surprised to find that a disproportionate human metabolite, BILR 516, was uncovered during this metabolite profiling study and pharmacokinetic analysis of BILR 516 showed that it had a longer half-life and higher exposure than the parent compound at steady state. Of interest, BILR 516 was not detected in human plasma when BILR 355 was administered alone. Therefore, whereas RTV boosted the exposure of BILR 355, it resulted in a significant metabolic switching of BILR 355. Overall, this article demonstrates an unusual example of metabolic switching and raises concern about the consequence of metabolic switching during drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.111.044354DOI Listing

Publication Analysis

Top Keywords

bilr 355
44
metabolic switching
16
bilr
14
bilr 516
12
0
11
switching bilr
8
disproportionate human
8
human metabolite
8
metabolism bilr
8
concomitant administration
8

Similar Publications

Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability.

J Int AIDS Soc

September 2013

Department of Pharmacy and Pharmaceutical Technology, Burjassot, Valencia, Spain.

Introduction: Human immunodeficiency virus (HIV) type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection.

Discussion: First-generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed.

View Article and Find Full Text PDF

Metabolic switching of BILR 355 in the presence of ritonavir. II. Uncovering novel contributions by gut bacteria and aldehyde oxidase.

Drug Metab Dispos

June 2012

Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.

Ritonavir (RTV) was used as a boosting agent to increase the clinical exposure of 11-ethyl-5,11-dihydro-5-methyl-8-[2-[(1-oxido-4-quinolinyl)oxy]ethyl]-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (BILR 355), an inhibitor of the human immunodeficiency virus, by inhibiting the CYP3A-mediated metabolism of BILR 355. However, although the levels of BILR 355 increased upon concomitant administration of RTV, a metabolite of BILR 355, BILR 516, which was not detected previously in humans dosed with BILR 355 alone, became a disproportionate human metabolite with levels exceeding the parent levels at steady state. This was an unusual finding based on the in vitro and in vivo metabolic profiles of BILR 355 available at that time.

View Article and Find Full Text PDF

Metabolic switching of BILR 355 in the presence of ritonavir. I. Identifying an unexpected disproportionate human metabolite.

Drug Metab Dispos

June 2012

Drug Metabolism & Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.

11-Ethyl-5,11-dihydro-5-methyl-8-[2-[(1-oxido-4-quinolinyl)oxy] ethyl]-6H-dipyrido[3,2-b:2',3'-e][1,4]diazepin-6-one (BILR 355) is an inhibitor of the human immunodeficiency virus-1. BILR 355 exhibited a nonlinear pharmacokinetic profile and low exposure after oral administration to humans. This article describes the in vitro metabolism of BILR 355, which is correlated with the in vivo nonlinearity findings.

View Article and Find Full Text PDF

What Is Known And Objective: BILR 355 is a second generation non-nucleoside reverse transcriptase inhibitor. It has shown promising in vitro anti-HIV-1 activities and favourable human pharmacokinetic properties after co-administration with ritonavir (RTV). Lamivudine (3TC) is a nucleoside reverse transcriptase inhibitor.

View Article and Find Full Text PDF

The objective of this study was to evaluate the pharmacokinetic interaction of ritonavir-boosted BILR 355 (BILR 355/r) with emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). This was an open-label, prospective study. For Group A, 26 healthy subjects were given FTC/TDF (200/300 mg) once daily (QD) for 7 days and then co-administered with BILR 355/r (150/100 mg) twice daily (bid) for an additional 7 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!