Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2011.41.1512DOI Listing

Publication Analysis

Top Keywords

trees forests
4
forests implications
4
implications braf
4
braf mutant
4
mutant gene
4
gene signature
4
signature patients
4
patients braf
4
braf wild-type
4
wild-type disease
4

Similar Publications

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.

View Article and Find Full Text PDF

Factor Retention in Exploratory Multidimensional Item Response Theory.

Educ Psychol Meas

January 2025

Faculty of Psychology and Educational Sciences, KU Leuven, Campus KULAK, Kortrijk, Belgium.

Multidimensional Item Response Theory (MIRT) is applied routinely in developing educational and psychological assessment tools, for instance, for exploring multidimensional structures of items using exploratory MIRT. A critical decision in exploratory MIRT analyses is the number of factors to retain. Unfortunately, the comparative properties of statistical methods and innovative Machine Learning (ML) methods for factor retention in exploratory MIRT analyses are still not clear.

View Article and Find Full Text PDF

Understanding Atlantic tropical forests' ecological dynamics and carbon storage potential in Cameroon is crucial for guiding sustainable management and conservation strategies. These forests play a significant role in carbon sequestration and biodiversity conservation. This study aimed to fill existing knowledge gaps by characterising plant communities, assessing the vegetation structure, and quantifying the potential of carbon stocks.

View Article and Find Full Text PDF

Lost circulation is one of the important challenges in drilling operations and bears financial losses and operational risks. The prime causes of lost circulation are related to several geological parameters, especially in problem-prone formations. Herein, the approach of applying machine learning models to forecast the intensity of lost circulation using well-log data is presented in this work.

View Article and Find Full Text PDF

Critical loads (CLs) are frequently used to quantify terrestrial ecosystem impacts from nitrogen (N) deposition using ecological responses such as the growth and mortality of tree species. Typically, CLs are reported as a single value, with uncertainty, for an indicator across a species' entire range. Mediating factors such as climate and soil conditions can influence species' sensitivity to N, but the magnitudes of these effects are rarely calculated explicitly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!