While the rheology of non-brownian suspensions in the dilute regime is well understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition. There is no accepted microscopic description of this phenomenon. However, in recent years it has been understood that the elasticity of simple amorphous solids is governed by a critical point, the unjamming transition where the pressure vanishes, and where elastic properties display scaling and a diverging length scale. The correspondence between these two transitions is at present unclear. Here we show that for a simple model of dense flow, which we argue captures the essential physics near the jamming threshold, a formal analogy can be made between the rheology of the flow and the elasticity of simple networks. This analogy leads to a new conceptual framework to relate microscopic structure to rheology. It enables us to define and compute numerically normal modes and a density of states. We find striking similarities between the density of states in flow, and that of amorphous solids near unjamming: both display a plateau above some frequency scale ω(∗) ∼ |z(c) - z|, where z is the coordination of the network of particle in contact, z(c) = 2D where D is the spatial dimension. However, a spectacular difference appears: the density of states in flow displays a single mode at another frequency scale ω(min) ≪ ω(∗) governing the divergence of the viscosity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324009 | PMC |
http://dx.doi.org/10.1073/pnas.1120215109 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
Circularly polarized luminescence (CPL) and mechanochromic luminescence (MCL) have independently made substantial progress in recent years. However, the exploration of MCL in solid-state CPL materials, which holds practical significance, is still in its infancy. Herein, we report the MCL properties of readily accessible chiral pyrenylprolinamides bearing tert-butoxycarbonyl (Boc) or 2,2,2-trichloroethoxycarbonyl (Troc) groups.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
CEA, DES, ISEC, DPME, SEME, University of Montpellier, Marcoule, Bagnols-sur-Cèze F-30207, France.
Although models have been proposed to explain the mechanisms of bioglass (BG) dissolution and subsequent calcium phosphate (CaP) mineralization, open questions remain. The processes in which phase transition occurs in aqueous solutions and their dynamics remain underexplored partly because traditional instruments/techniques do not allow for direct observations at the adequate time and length scales at which such phase transformations occur. For instance, given the crucial role of the silica gel in CaP formation during BG dissolution, uncertainty exists about how such a silica gel forms on the BG surface.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China.
The hydrogenation of carbon dioxide into profitable chemicals is a viable path toward achieving the objective of carbon neutrality. However, the typical approach for hydrogenation of CO heavily relies on thermally driven catalysis at high temperatures, which is not aligned with the goals of carbon neutrality. Thus, there is a critical need to explore new catalytic methods for the high-efficiency conversion of CO.
View Article and Find Full Text PDFChemistry
January 2025
Lund University: Lunds Universitet, Centre for Analysis and Synthesis and NanoLund, 22362, Lund, SWEDEN.
Lead-based piezoceramics are the dominant materials used in electronic devices, despite the known toxicity of lead. Developing safer piezoelectric materials has inspired the pursuit of lead-free piezoceramics, however some challenges remain in accessing these materials reproducibly. Here we demonstrate a simple and robust method for synthesis of the lead-free piezoceramic material, potassium sodium niobate (KxNa1-xNbO3, KNN) via an aqueous route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!