A novel poly(lactic-co-glycolic acid) (PLGA)-based nanoformulation of levofloxacin was developed for multidrug-resistant tuberculosis with the purpose of achieving sustained release in plasma. After lyophilization of levofloxacin-loaded nanoparticles, the average size, charge, and polydispersity index were 268 ± 18 nm, -10.2 ± 1.5 mV, and 0.15 ± 0.03, respectively. The maximum drug encapsulation efficiency and loading capacity were 36.9 ± 6.1% (w/w) and 7.2 ± 1.2 mg/100 mg nanopowder, respectively. Biphasic extended-release profile was produced in vitro. Scanning electron microscopy and Fourier transform infrared studies showed spherical shape of drug-loaded nanoparticles and no drug-polymer interactions were observed. After single oral administration in mice, levofloxacin-loaded PLGA nanoparticles produced sustained release of levofloxacin for 4 days in plasma against 24 h for free levofloxacin. Levofloxacin was detected in organs (lung, liver, and spleen) for up to 4-6 days in case of levofloxacin-loaded nanoparticles, whereas free levofloxacin was cleared within 24 h. This novel formulation did not show any significant adverse effects on body weight and clinical signs in mice. No treatment-related changes were found in hematological and biochemical parameters and on histopathological evaluation. These results indicate the feasibility of development of an orally efficacious safe formulation of levofloxacin with sustained-release properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.23087DOI Listing

Publication Analysis

Top Keywords

levofloxacin-loaded plga
8
sustained release
8
levofloxacin-loaded nanoparticles
8
free levofloxacin
8
levofloxacin
6
optimization vitro-in
4
vitro-in vivo
4
vivo evaluation
4
evaluation short-term
4
short-term tolerability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!