Among natural metalloenzymes, the facial two-histidines one-carboxylate binding motif (FTM) is a widely represented first coordination sphere motif present in the active site of a variety of metalloenzymes. A PDB search revealed a total of 1685 structures bearing such FTMs bound to a metal. Sixty statistically representative FTMs were selected and used as template for the identification of structurally characterized proteins bearing these three amino acids in a propitious environment for binding to a transition metal. This geometrical superposition search, carried out using the STAMPS software, returned 2320 hits. While most consisted of either apo-FTMs or bore strong sequence homology to known FTMs, seven such structures lying within a cavity were identified as novel and viable scaffolds for the creation of artificial metalloenzymes bearing an FTM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2mt20010d | DOI Listing |
Acc Chem Res
September 2022
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
In recent years, considerable progress has been made toward elucidating the geometric and electronic structures of thiol dioxygenases (TDOs). TDOs catalyze the conversion of substrates with a sulfhydryl group to their sulfinic acid derivatives via the addition of both oxygen atoms from molecular oxygen. All TDOs discovered to date belong to the family of cupin-type mononuclear nonheme Fe(II)-dependent metalloenzymes.
View Article and Find Full Text PDFMetallomics
April 2012
Department of Chemistry, University of Basel, Spitalstrasse 51, CH 4056-Basel, Switzerland.
Among natural metalloenzymes, the facial two-histidines one-carboxylate binding motif (FTM) is a widely represented first coordination sphere motif present in the active site of a variety of metalloenzymes. A PDB search revealed a total of 1685 structures bearing such FTMs bound to a metal. Sixty statistically representative FTMs were selected and used as template for the identification of structurally characterized proteins bearing these three amino acids in a propitious environment for binding to a transition metal.
View Article and Find Full Text PDFNature
March 2006
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Non-haem Fe(II)/alpha-ketoglutarate (alphaKG)-dependent enzymes harness the reducing power of alphaKG to catalyse oxidative reactions, usually the hydroxylation of unactivated carbons, and are involved in processes such as natural product biosynthesis, the mammalian hypoxic response, and DNA repair. These enzymes couple the decarboxylation of alphaKG with the formation of a high-energy ferryl-oxo intermediate that acts as a hydrogen-abstracting species. All previously structurally characterized mononuclear iron enzymes contain a 2-His, 1-carboxylate motif that coordinates the iron.
View Article and Find Full Text PDFDalton Trans
October 2004
Department of Physics, Stockholm University, SE 106 91, Sweden.
Density functional theory with the B3LYP hybrid functional has been used to study the mechanisms for dioxygen activation by four families of mononuclear non-heme iron enzymes: alpha-ketoacid-dependent dioxygenases, tetrahydrobiopterin-dependent hydroxylases, extradiol dioxygenases, and Rieske dioxygenases. These enzymes have a common active site with a ferrous ion coordinated to two histidines and one carboxylate group (aspartate or glutamate). In contrast to the heme case, this type of weak field environment always leads to a high-spin ground state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!