Cdk9 and Cdk7 are cdc2-like serine/threonine kinases that stabilize RNA transcript elongation through RNA polII carboxyl terminal domain (CTD) phosphorylation and are considered suitable targets for cancer therapy. The effects of flavopiridol and of siRNA-mediated inhibition of Cdk9 and/or Cdk7 were analyzed in human glioblastoma and human prostate cancer cell lines. One finding revealed that Cdk9 and Cdk7 could substitute each other in RNA polII CTD phosphorylation in contrast to the in vitro system. Thus, a simultaneous inhibition of Cdk9 and Cdk7 might be required both for targeting malignant cells and developing a platform for microarray analysis. However, these two pathways are not redundant, as indicated by differential effects observed in cell cycle regulation following siRNA-mediated inhibition of Cdk9 and/or Cdk7 in human PC3 prostate cancer cell line. Specifically, siRNA-mediated inhibition of Cdk9 caused a shift from G 0/G 1 to G 2/M phase in human PC3 prostate cancer cell line. Another finding showed that flavopiridol treatment induced a substantial AKT-Ser473 phosphorylation in human glioblastoma T98G cell line in contrast to siRNA-mediated inhibition of Cdk9 and Cdk9 combined with Cdk7, whereas siRNA-mediated silencing of Cdk7 caused a minor increase in AKT-Ser473 phosphorylation. AKT-Ser473 is a hallmark of AKT pathway activation and may protect cells from apoptosis. This finding also shows that Cdk9 and Cdk7 pathways are not redundant and may have important implications in drug development and for studying the mechanism of chemoresistance in malignant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.11.6.19663 | DOI Listing |
Bioorg Chem
December 2024
Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Cyclin-dependent kinases, CDK7 and CDK9 play critical roles in cancer by regulating transcriptional processes essential for cell proliferation and survival. Their dysregulation leads to aberrant gene expression, promoting oncogenic pathways and contributing to tumor growth and progression. This study aimed to identify a new chemotype for CDK7/9 inhibitors using a structure-based virtual screening approach.
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, P. R. China.
CDK2 and CDK9 play pivotal roles in cell cycle progression and gene transcription, respectively, making them promising targets for cancer treatment. Herein, we discovered a series of -(substituted thiazol-2-yl)--(4-substituted phenyl)pyrimidine-2,4-diamines as highly potent CDK2/9 dual inhibitors. Especially, compound significantly inhibited CDK2 (IC = 0.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
We tested newly synthesized compounds 1-13 on 59 cancer cell lines and found that acylhydrazones 5, 6, 7, 9, and 12 showed the best cytotoxic activity. They stopped the mean growth percentage (MG%) by an average of 23.5, 55.
View Article and Find Full Text PDFBlood Adv
December 2024
City of Hope, Duarte, California, United States.
The anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) contributes to the pathophysiology of acute myeloid leukemia (AML) and certain B-cell malignancies. Tumor dependence on Mcl-1 is associated with resistance to venetoclax. Voruciclib, an oral cyclin-dependent kinase (CDK) inhibitor targeting CDK9, indirectly decreases Mcl-1 protein expression and synergizes with venetoclax in preclinical models.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!