Rad18 is a transcriptional target of E2F3.

Cell Cycle

Department of Biochemistry and University of Mississippi Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.

Published: March 2012

The E2F family of transcription factors responds to a variety of intracellular and extracellular signals and, as such, are key regulators of cell growth, differentiation and cell death. The cellular response to DNA damage is a multistep process generally involving the initial detection of DNA damage, propagation of signals via posttranslational modifications (e.g., phosphorylation and ubiquitination) and, finally, the implementation of a response. We have previously reported that E2F3 can be induced by DNA damage, and that it plays an important role in DNA damage-induced apoptosis. Here, we demonstrate that E2F3 knockdown compromises two canonical DNA damage modification events, the ubiquitination of H2AX and PCNA. We find that the defect in these posttranscriptional modifications after E2F3 knockdown is due to reduced expression of important DNA damage responsive ubiquitin ligases. We characterized the regulation of one of these ligases, Rad18, and we demonstrated that E2F3 associates with the Rad18 promoter and directly controls its activity. Furthermore, we find that ectopic expression of Rad18 is sufficient to rescue the PCNA ubiquitination defect resulting from E2F3 knockdown. Our study reveals a novel facet of E2F3's control of the DNA damage response.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.11.6.19558DOI Listing

Publication Analysis

Top Keywords

dna damage
24
e2f3 knockdown
12
dna
7
e2f3
6
damage
6
rad18
4
rad18 transcriptional
4
transcriptional target
4
target e2f3
4
e2f3 e2f
4

Similar Publications

E. Coli cytotoxic necrotizing factor-1 promotes colorectal carcinogenesis by causing oxidative stress, DNA damage and intestinal permeability alteration.

J Exp Clin Cancer Res

January 2025

Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.

Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression.

View Article and Find Full Text PDF

Background: Promising cancer treatments, such as DDR inhibitors, are often challenged by the heterogeneity of responses in clinical trials. The present work aimed to build a computational framework to address those challenges.

Methods: A semi-mechanistic pharmacokinetic-pharmacodynamic model of tumour growth inhibition was developed to investigate the efficacy of PARP and ATR inhibitors as monotherapies, and in combination.

View Article and Find Full Text PDF

DRAM1 enhances the proliferation and metastasis of gastric cancer through the PI3K/AKT/mTOR signaling pathway and energy metabolism.

Sci Rep

January 2025

Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China.

Gastric cancer (GC) is a prevalent malignant tumor of the digestive system that is often diagnosed at advanced stages owing to inconspicuous early symptoms and a lack of specific examination methods. Effective treatment of advanced stages remains challenging, emphasizing the need for new therapeutic targets. Metabolic reprogramming, a hallmark of tumors, plays a pivotal role in tumor progression, immune evasion, and immune surveillance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!