The amendment of the subsurface with nanoscale metallic iron particles (nano-Fe(0)) has been discussed in the literature as an efficient in situ technology for groundwater remediation. However, the introduction of this technology was controversial and its efficiency has never been univocally established. This unsatisfying situation has motivated this communication whose objective was a comprehensive discussion of the intrinsic reactivity of nano-Fe(0) based on the contemporary knowledge on the mechanism of contaminant removal by Fe(0) and a mathematical model. It is showed that due to limitations of the mass transfer of nano-Fe(0) to contaminants, available concepts cannot explain the success of nano-Fe(0) injection for in situ groundwater remediation. It is recommended to test the possibility of introducing nano-Fe(0) to initiate the formation of roll-fronts which propagation would induce the reductive transformation of both dissolved and adsorbed contaminants. Within a roll-front, Fe(II) from nano-Fe(0) is the reducing agent for contaminants. Fe(II) is recycled by biotic or abiotic Fe(III) reduction. While the roll-front concept could explain the success of already implemented reaction zones, more research is needed for a science-based recommendation of nano-Fe(0) for subsurface treatment by roll-fronts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283769 | PMC |
http://dx.doi.org/10.1007/s11270-011-0951-1 | DOI Listing |
Methods Cell Biol
January 2025
T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain. Electronic address:
T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China.
In this paper, a new sensor structure is designed, which consists of a metal-insulator-metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
High-Power Converter Systems (HLU), Technical University of Munich (TUM), 80333 Munich, Germany.
Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!