The cellular apoptosis susceptibility gene CAS/CSE1L is overexpressed in cancer, although it was originally identified as a gene that renders cells vulnerable to apoptotic stimuli. CAS/CSE1L has roles in the nucleocytoplasmic recycling of importin-α and in the regulation of gene expression, cell migration, and secretion. We identified CAS/CSE1L as a survival factor for ovarian cancer cells in vitro and in vivo. In 3/3 ovarian cancer cell lines, CAS/CSE1L was down-modulated by the unorthodox proapoptotic signaling of the MET receptor. CAS/CSE1L knockdown with RNA interference committed the ovarian cancer cells to death, but not immortalized normal cells and breast and colon cancer cells. In 70 and 95% of these latter cells, respectively, CAS/CSE1L was localized in the cytoplasm, while it accumulated in the nucleus in >90% of ovarian cancer cells. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells. In the nucleus, CAS/CSE1L regulated the expression of the proapoptotic Ras-association domain family 1 gene products RASSF1C and RASSF1A, which mediated death signals evoked by depletion of CAS/CSE1L. Our data show that CAS/CSE1L protects ovarian cancer cells from death through transcriptional suppression of a proapoptotic gene and suggest that the localization of CAS/CSE1L dictates its function.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-195982DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
28
cancer cells
28
cells death
12
cas/cse1l
11
cells
10
cancer
9
cellular apoptosis
8
apoptosis susceptibility
8
protects ovarian
8
ovarian
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!