Mutations in genes of the splicing machinery have been described recently in myelodysplastic syndromes (MDS). In the present study, we examined a cohort of 193 MDS patients for mutations in SRSF2, U2AF1 (synonym U2AF35), ZRSR2, and, as described previously, SF3B1, in the context of other molecular markers, including mutations in ASXL1, RUNX1, NRAS, TP53, IDH1, IDH2, NPM1, and DNMT3A. Mutations in SRSF2, U2AF1, ZRSR2, and SF3B1 were found in 24 (12.4%), 14 (7.3%), 6 (3.1%), and 28 (14.5%) patients, respectively, corresponding to a total of 67 of 193 MDS patients (34.7%). SRSF2 mutations were associated with RUNX1 (P < .001) and IDH1 (P = .013) mutations, whereas U2AF1 mutations were associated with ASXL1 (P = .005) and DNMT3A (P = .004) mutations. In univariate analysis, mutated SRSF2 predicted shorter overall survival and more frequent acute myeloid leukemia progression compared with wild-type SRSF2, whereas mutated U2AF1, ZRSR2, and SF3B1 had no impact on patient outcome. In multivariate analysis, SRSF2 remained an independent poor risk marker for overall survival (hazard ratio = 2.3; 95% confidence interval, 1.28-4.13; P = .017) and acute myeloid leukemia progression (hazard ratio = 2.83; 95% confidence interval, 1.31-6.12; P = .008). These results show a negative prognostic impact of SRSF2 mutations in MDS. SRSF2 mutations may become useful for clinical risk stratification and treatment decisions in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2011-12-399337DOI Listing

Publication Analysis

Top Keywords

mutations srsf2
12
srsf2 u2af1
12
u2af1 zrsr2
12
srsf2 mutations
12
mutations
11
srsf2
9
prognostic impact
8
myelodysplastic syndromes
8
193 mds
8
mds patients
8

Similar Publications

Clonal hematopoiesis of indeterminate potential and the risk of pulmonary embolism: an observational study.

EClinicalMedicine

August 2024

Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Guangzhou, China.

Background: Pulmonary embolism causes a substantial burden of morbidity and mortality. Although there are several well-established risk factors for pulmonary embolism, a substantial proportion of cases cannot be attributed to provoked or known risk factors. Accumulating evidence has suggested an association of clonal hematopoiesis of indeterminate potential (CHIP) with the risk of arterial thromboembolism.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) are clonal hematopoietic cancers characterized by hyperproliferation of the myeloid lineages. These clonal marrow disorders are extremely rare in pediatric patients. MPN is reported to occur 100 times more frequently in adults, and thus research is primarily focused on this patient group.

View Article and Find Full Text PDF

The mutations in and genes are frequently present in various myeloid neoplasms. The potential impact of / co-mutations on patient survival is incompletely understood. We identified 412 patients with / co-mutations from our NextGen sequencing database of around 8000 patients and reported likely the largest cohort study.

View Article and Find Full Text PDF
Article Synopsis
  • Jumping translocations (JT), linked to disease progression in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), involve the movement of a tri-tetra-somic 1q chromosome to various other chromosomes.
  • Research showed that in patients with SRSF2 mutations, JT was associated with changes in DNA methylation during treatment with 5'-azacytidine (AZA), revealing significant shifts in the methylome and impacting various biological pathways.
  • The study highlighted that epigenetic modifications, including changes in DNA methylation and specific signaling pathways like PI3K/AKT and MAPK, play a crucial role in the progression of myeloid neoplasms associated with
View Article and Find Full Text PDF
Article Synopsis
  • This study analyzes the role of genetic mutations in Chronic Myelomonocytic Leukemia (CMML) and their effect on treatment responses among 51 patients treated at a single institution, compared to a statewide dataset from Kentucky.
  • Key mutations in genes like TET2, ASXL1, and SRSF2 were identified as significant prognostic indicators that influence patient survival outcomes.
  • The research highlights the importance of targeted genetic profiling for understanding CMML progression and emphasizes the need for advanced screening to personalize treatment strategies for better patient care.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!