Catheters are routinely inserted via vessels to cavities of the heart during fluoroscopic image guided interventions for electrophysiology (EP) procedures such as ablation. During such interventions, the catheter undergoes nonrigid deformation due to physician interaction, patient's breathing, and cardiac motions. EP clinical applications can benefit from fast and accurate automatic catheter tracking in the fluoroscopic images. The typical low quality in fluoroscopic images and the presence of other medical instruments in the scene make the automatic detection and tracking of catheters in clinical environments very challenging. Toward the development of such an application, a robust and efficient method for detecting and tracking the catheter sheath is developed. The proposed approach exploits the clinical setup knowledge to constrain the search space while boosting both tracking speed and accuracy, and is based on a computationally efficient framework to trace the sheath and simultaneously detect one or multiple catheter tips. The algorithm is based on a modification of the fast marching weighted distance computation that efficiently calculates, on the fly, important geodesic properties in relevant regions of the image. This is followed by a cascade classifier for detecting the catheter tips. The proposed technique is validated on 1107 fluoroscopic images acquired on multiple patients across four different clinics, achieving multiple catheter tracking at a rate of 10 images/s with a very low false positive rate of 1.06.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TITB.2012.2189407 | DOI Listing |
Front Endocrinol (Lausanne)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Adrenal Vein Sampling (AVS) is the gold standard for categorizing primary aldosteronism (PA). However, catheterization of the right adrenal vein (RAV) can be technically challenging. This study aimed to investigate the validity of the right renal vertebral contour as fluoroscopic landmarks to help RAV orifice localization during AVS.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Spine Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
The aim of this research was to conduct randomized trials assessing the extent of cement diffusion following robot-assisted percutaneous vertebroplasty (R-PVP) for osteoporotic vertebral compression fractures (OVCF). A total of 96 OVCF patients meeting the inclusion criteria and admitted between January 2023 and November 2023 were included in the study. Among them, 48 patients were assigned to the robotic-assisted PVP group (R-PVP group) and 48 patients were assigned to the traditional PVP group (PVP group).
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Diagnostic Radiology, First Medical Center of the Chinese PLA General Hospital, Beijing, China.
Background: Traditional freehand puncture relies on non-real-time computed tomography (CT) images, which significantly affects the accuracy of puncturing targets in the lower lung lobes with respiratory motion. This study aims to assess the safety and feasibility of a teleoperated robotic system and low-dose CT for the accurate real-time puncture of targets in the lungs of live pigs during breathing under fluoroscopic guidance.
Methods: Two puncture methods were analyzed: freehand and robot-assisted.
World J Urol
January 2025
Department of Urology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102208, China.
Purpose: The objective of this study was to explore the feasibility of using the TianJi Robot system for navigated needle positioning in the PCNL procedure in vitro.
Methods: A pig kidney with a segment of ureter was selected as the in vitro organ model. Iodine contrast agent was infused into the renal pelvis to dilate the renal pelvis and calyx to establish the in vitro hydronephrosis model.
JACC Case Rep
January 2025
Interventional Cardiology Section, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
Aneurysms of the interventricular membranous septum are a rare anatomical feature that can be detected incidentally on computed tomography or echocardiography. Such aneurysms can pose challenges in the treatment of patients with aortic valve stenosis. A case series of 2 patients with membranous septal aneurysms treated successfully with current-generation balloon-expandable and self-expanding transcatheter heart valves is presented here.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!