A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility. | LitMetric

A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS(2)) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS(2)-tag is replaced with non-isotope labeled PrS(2)-tag, silencing the NMR signals from PrS(2)-tag in isotope-filtered (1)H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS(2)-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS(2) (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS(2)-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS(2)-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone (1)H, (15)N and (13)C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear (1)H-(15)N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117381PMC
http://dx.doi.org/10.1007/s10858-012-9610-0DOI Listing

Publication Analysis

Top Keywords

nmr studies
12
expression solubility
8
trosy-hsqc spectrum
8
chemical shift
8
full-length rbfa
8
rbfaΔ25 construct
8
protein
7
rbfa
7
nmr
6
prs2-tag
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!