Dehydrogenative cross-coupling reaction of primary anilines, secondary anilines, carboxamides, and sulfonamides with 1,3-diarylpropenes to form a series of allylic amines promoted by DDQ have been realized. Both monoallylation and diallylation products can be selectively synthesized when primary anilines are used as the starting materials. The method may provide a wide scope of allylamines in scientific research including biologically active compound library construction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2ob06826eDOI Listing

Publication Analysis

Top Keywords

allylic amines
8
primary anilines
8
metal-free synthesis
4
synthesis allylic
4
amines cross-dehydrogenative-coupling
4
cross-dehydrogenative-coupling 13-diarylpropenes
4
anilines
4
13-diarylpropenes anilines
4
anilines amides
4
amides mild
4

Similar Publications

One-Pot Domino Catalysis to Construct Alkyl/Aryl Pyrroles Initiated by Pd-TMM Annulation of Unactivated Imines.

Org Lett

January 2025

China Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, and Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.

Herein, a one-pot domino catalyzed three-component process is described, which is initiated by a palladium/zinc cooperatively catalyzed cycloaddition between trimethylenemethane (TMM) and unactivated alkyl/aryl imines, followed by one-pot isomerization and Zn(OTf)-catalyzed DDQ oxidation, furnishing valuable substituted pyrroles. We disclose that the palladium/zinc cooperative catalysis affords a dual-Zn(OTf)-stabilized azapalladacycle, wherein the Pd-N bond is polarized by Zn(OTf), facilitating a unique outer-sphere allylic amination. Moreover, subsequent DDQ dehydrogenation can be feasibly promoted by zinc catalysis.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Dirhodium-Palladium Dual-Catalyzed [1 + 1 + 3] Annulation to Heterocycles Using Primary Amines or HO as the Heteroatom Sources.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The ever-increasing demand in chemical biology and medicinal research requires the development of new synthetic methods for the rapid construction of libraries of heterocycles from simple raw materials. In this context, the utilization of primary amines or HO as the simple - or -sources in the assembly of a heterocyclic ring skeleton is highly desirable from the viewpoint of atom- and step-economy. Herein, we describe a highly efficient three-component reaction of diazo, allylic diacetates, and commercially available anilines (or HO) to access structurally diverse pyrrolidine and tetrahydrofuran derivatives.

View Article and Find Full Text PDF

The utilization of β-fluoroamines as pharmaceutical components for drug development has attracted a considerable amount of interest. However, direct access to tertiary β-fluoroamines is challenging. We herein report the rhodium-catalyzed asymmetric amination of tertiary allylic trichloroacetimidates with anilines and cyclic aliphatic amines to access tertiary β-fluoroamines, where the α-carbon atom is bonded to four different substituents, in good yield with high levels of enantioselectivity.

View Article and Find Full Text PDF

Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!