The ability of spermatogonial stem cells to acquire embryonic stem cell (ESC) properties in vitro has recently been of great interest. However, studies focused on the in vivo regulation of testicular stem cells have been hampered because the exact anatomical location of these cells is unknown. Moreover, no specialized stem cell niche substructure has been identified in the mammalian testis thus far. It has also been unclear whether the adult mammalian testis houses pluripotent stem cells or whether pluripotency can be induced only in vitro. Here, we demonstrate, for the first time, the existence of a Nanog-positive spermatogonial stem cell subpopulation located in stage XII of the mouse seminiferous epithelial cycle. The efficiency of the cells from seminiferous tubules with respect to prolonged pluripotent gene expression was correlated directly with stage-specific expression levels of Nanog and Oct4, demonstrating the previously unknown stage-specific regulation of undifferentiated spermatogonia (SPG). Testicular Nanog expression marked a radioresistant spermatogonial subpopulation, supporting its stem cell nature. Furthermore, we demonstrated that p21 acts as an upstream regulator of Nanog in SPG and mouse ESCs, and our results demonstrate that promyelocytic leukemia zinc finger is a specific marker of progenitor SPG. Additionally, we describe a novel method to cultivate Nanog-positive SPG in vitro. This study demonstrates the existence and location of a previously unknown stage-specific spermatogonial stem cell niche and reports the regulation of radioresistant spermatogonial stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/stem.1077DOI Listing

Publication Analysis

Top Keywords

stem cell
24
spermatogonial stem
20
stem cells
20
cell niche
12
stem
11
nanog-positive spermatogonial
8
mammalian testis
8
unknown stage-specific
8
radioresistant spermatogonial
8
cells
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!