The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB(1)) is present at the membranes of mouse neuronal mitochondria (mtCB(1)), where it directly controls cellular respiration and energy production. Through activation of mtCB(1) receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB(1) receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB(1) receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein-coupled receptor signaling in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.3053DOI Listing

Publication Analysis

Top Keywords

neuronal energy
8
energy metabolism
8
neuronal mitochondria
8
mtcb1 receptors
8
mitochondrial cb₁
4
receptors
4
cb₁ receptors
4
receptors regulate
4
neuronal
4
regulate neuronal
4

Similar Publications

This study presents a comprehensive workflow for developing and deploying Multi-Layer Perceptron (MLP)-based soft sensors on embedded FPGAs, addressing diverse deployment objectives. The proposed workflow extends our prior research by introducing greater model adaptability. It supports various configurations-spanning layer counts, neuron counts, and quantization bitwidths-to accommodate the constraints and capabilities of different FPGA platforms.

View Article and Find Full Text PDF

Creatine monohydrate supplementation is widely used by athletes in high-intensity, power-based sports due to its ability to enhance short-term performance by increasing intramuscular phosphocreatine (PCr) stores, which aid in ATP resynthesis during intense muscle contractions. However, emerging evidence suggests that creatine monohydrate offers benefits beyond athletic performance. This narrative review explores the literature supporting the advantages of creatine supplementation in women, vegans, and clinical populations.

View Article and Find Full Text PDF

The substantial evidence supporting the ketogenic diet (KD) in epilepsy management has spurred research into its effects on other neurological and psychiatric conditions. Despite differences in characteristics, symptoms, and underlying mechanisms, these conditions share common pathways that the KD may influence. The KD reverses metabolic dysfunction.

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation.

Int J Mol Sci

December 2024

Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy.

In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!