AI Article Synopsis

  • Pulmonary arterial hypertension (PAH) is a serious cardiovascular condition linked to abnormal growth and survival of pulmonary arterial smooth muscle cells, often due to mutations in the BMPR2 receptor.
  • The TGFβ signaling pathway is involved in PAH, activating mechanisms that lead to increased cell proliferation and reduced cell death, yet the specifics of this interaction are not fully understood.
  • Research using mouse models shows that dysfunction in BMPR-II enhances the TGFβ-MAPK signaling pathway via TAK1, suggesting that targeting this pathway might offer new treatment options for PAH.

Article Abstract

Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor β (TGFβ) pathway is activated in both human and experimental models of PAH. However, how these factors exert pro-proliferative and anti-apoptotic responses in PAH remains unclear. Using mouse primary PASMCs derived from knock-in mice, we demonstrated that BMPR-II dysfunction promotes the activation of small mothers against decapentaplegia-independent mitogen-activated protein kinase (MAPK) pathways via TGFβ-associated kinase 1 (TAK1), resulting in a pro-proliferative and anti-apoptotic response. Inhibition of the TAK1-MAPK axis rescues abnormal proliferation and apoptosis in these cells. In both hypoxia and monocrotaline-induced PAH rat models, which display reduced levels of bmpr2 transcripts, this study further indicates that the TGFβ-MAPK axis is activated in lungs following elevation of both expression and phosphorylation of the TAK1 protein. In ex vivo cell-based assays, TAK1 inhibits BMP-responsive reporter activity and interacts with BMPR-II receptor. In the presence of pathogenic BMPR2 mutations observed in PAH patients, this interaction is greatly reduced. Taken together, these data suggest dysfunctional BMPR-II responsiveness intensifies TGFβ-TAK1-MAPK signalling and thus alters the ratio of apoptosis to proliferation. This axis may be a potential therapeutic target in PAH.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/dds073DOI Listing

Publication Analysis

Top Keywords

pro-proliferative anti-apoptotic
12
anti-apoptotic responses
8
pah
8
pulmonary arterial
8
bmpr-ii
4
bmpr-ii deficiency
4
deficiency elicits
4
elicits pro-proliferative
4
responses activation
4
activation tgfβ-tak1-mapk
4

Similar Publications

Ozone (O) is an unstable, highly oxidative gas that rapidly decomposes into oxygen. The therapeutic use of O dates back to the beginning of 20th century and is currently based on the application of low doses, inducing moderate oxidative stress that stimulates the antioxidant cellular defences without causing cell damage. In recent decades, experimental investigations allowed the establishment of some basic mechanisms accounting for the therapeutic effects of eustress-inducing low-dose O.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid (AA) into biologically active epoxyeicosatrienoic acids (EETs), forming a pivotal metabolic pathway (AA-CYP-EETs-soluble epoxide hydrolase-dihydroxyeicosatrienoic acids) implicated in the progression of various disorders. Inflammation is a key contributor to the onset and progression of numerous systemic diseases, and EETs play a significant role in mitigating inflammation. Extensive research highlights the cardiovascular protective effects of EETs, which include vasodilation, anti-hypertensive, and anti-atherosclerotic properties.

View Article and Find Full Text PDF

The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation.

View Article and Find Full Text PDF

Cell Adhesion Molecules as Modulators of the Epidermal Growth Factor Receptor.

Cells

November 2024

School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.

Cell adhesion molecules (CAMs) are cell surface glycoproteins mediating interactions of cells with other cells and the extracellular matrix. By mediating the adhesion and modulating activity of other plasma membrane proteins, CAMs are involved in regulating a multitude of cellular processes, including growth, proliferation, migration, and survival of cells. In this review, we present evidence showing that various CAMs interact with the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase inducing pro-proliferative and anti-apoptotic intracellular signaling in response to binding to several soluble ligands, including the epidermal growth factor.

View Article and Find Full Text PDF

The role of IL-22 in cancer.

Med Oncol

September 2024

Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.

Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!