The cilium is a microtubule-based organelle that contains a unique complement of proteins for cell motility and signalling functions. Entry into the ciliary compartment is proposed to be regulated at the base of the cilium. Recent work demonstrated that components of the nuclear import machinery, including the Ran GTPase and importins, regulate ciliary entry. We hypothesized that the ciliary base contains a ciliary pore complex whose molecular nature and selective mechanism are similar to those of the nuclear pore complex. By microinjecting fluorescently labelled dextrans and recombinant proteins of various sizes, we characterize a size-dependent diffusion barrier for the entry of cytoplasmic molecules into primary cilia in mammalian cells. We demonstrate that nucleoporins localize to the base of primary and motile cilia and that microinjection of nucleoporin-function-blocking reagents blocks the ciliary entry of kinesin-2 KIF17 motors. Together, this work demonstrates that the physical and molecular nature of the ciliary pore complex is similar to that of the nuclear pore complex, and further extends functional parallels between nuclear and ciliary import.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319646 | PMC |
http://dx.doi.org/10.1038/ncb2450 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
The pore-forming enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFAnal Chem
January 2025
Chemistry Department, Indiana University, Bloomington, Indiana 47405, United States.
Charge detection mass spectrometry (CD-MS) is an emerging single-particle technique where both the / and charge are measured individually to determine each ion's mass. It is particularly well-suited for analyzing high mass and heterogeneous samples. With conventional MS, the loss of charge state resolution with high mass samples has hindered the direct coupling of MS to separation techniques like size exclusion chromatography (SEC) and forced the use of lower resolution detectors.
View Article and Find Full Text PDFWe report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems (MPS). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!