Protein glutathionylation is a posttranslational modification of cysteine residues with glutathione in response to mild oxidative stress. Because 15-deoxy-Δ12,14-prostaglandin J(2) (15d-PGJ(2)) is an electrophilic prostaglandin that can increase glutathione (GSH) levels and augment reactive oxygen species (ROS) production, we hypothesized that it induces NF-κB-p65 glutathionylation and would exert anti-inflammatory effects. Herein, we show that 15d-PGJ(2) suppresses the expression of ICAM-1 and NF-κB-p65 nuclear translocation. 15d-PGJ(2) upregulates the Nrf2-related glutathione synthase gene and thereby increases the GSH levels. Consistent with this, Nrf2 siRNA molecules abolish the inhibition of p65 nuclear translocation in 15d-PGJ(2)-induced endothelial cells (ECs). ECs treated with GSSG show increased thiol modifications of p65 and also a block in TNFα-induced p65 nuclear translocation and ICAM-1 expression, but not in IκBα degradation. However, the overexpression of glutaredoxin 1 was found to be accompanied by a modest increase in NF-κB activity. Furthermore, we found that multiple cysteine residues in p65 are responsible for glutathionylation. 15d-PGJ(2) was observed to induce p65 glutathionylation and is suppressed by a GSH synthesis inhibitor, buthionine sulfoximine, by catalase, and by Nrf2 siRNA molecules. Our results thus indicate that the GSH/ROS-dependent glutathionylation of p65 is likely to be responsible for 15d-PGJ(2)-mediated NF-κB inactivation and for the enhanced inhibitory effects of 15d-PGJ(2) on TNFα-treated ECs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.028DOI Listing

Publication Analysis

Top Keywords

nuclear translocation
12
glutathionylation p65
8
nf-κb activity
8
endothelial cells
8
cysteine residues
8
gsh levels
8
effects 15d-pgj2
8
nrf2 sirna
8
sirna molecules
8
p65 nuclear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!