Learning expectation in insects: a recurrent spiking neural model for spatio-temporal representation.

Neural Netw

Department of Electrical, Electronic and Computer Science Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.

Published: August 2012

AI Article Synopsis

  • Insects, particularly the fruit fly Drosophila melanogaster, are highlighted as valuable models in neuroscience for understanding cognitive processes due to their simpler yet adaptive brains.
  • A neural model inspired by the insect olfactory system is proposed, featuring a multilayer spiking network that mimics structures involved in processing olfactory information, such as Mushroom Bodies, Lateral Horns, and Antennal Lobes.
  • The model exhibits emergent behaviors like attentional loops and expectation responses to stimuli, supported by simulations that demonstrate biological relevance and the influence of noise in the network.

Article Abstract

Insects are becoming a reference point in Neuroscience for the study of biological aspects at the basis of cognitive processes. These animals have much simpler brains with respect to higher animals, showing, at the same time, impressive capability to adaptively react and take decisions in front of complex environmental situations. In this paper we propose a neural model inspired by the insect olfactory system, with particular attention to the fruit fly Drosophila melanogaster. This architecture is a multilayer spiking network, where each layer is inspired by the structures of the insect brain mainly involved in olfactory information processing, namely the Mushroom Bodies, the Lateral Horns and the Antennal Lobes. In the Antennal Lobes layer olfactory signals lead to a competition among sets of neurons, resulting in a pattern which is projected to the Mushroom Bodies layer. Here a competitive reaction-diffusion process leads to a spontaneous emerging of clusters. The Lateral Horns have been modeled as a delayed input-triggered resetting system. Using plastic recurrent connections, with the addition of simple learning mechanisms, the structure is able to realize a top-down modulation at the input level. This leads to the emergence of an attentional loop as well as to the arousal of basic expectation behaviors in case of subsequently presented stimuli. Simulation results and analysis on the biological plausibility of the architecture are provided and the role of noise in the network is reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2012.02.034DOI Listing

Publication Analysis

Top Keywords

neural model
8
mushroom bodies
8
lateral horns
8
antennal lobes
8
learning expectation
4
expectation insects
4
insects recurrent
4
recurrent spiking
4
spiking neural
4
model spatio-temporal
4

Similar Publications

Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.

View Article and Find Full Text PDF

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

Physics-Based Synthetic Data Model for Automated Segmentation in Catalysis Microscopy.

Microsc Microanal

January 2025

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.

In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!