Total solids content drives high solid anaerobic digestion via mass transfer limitation.

Bioresour Technol

INRA, UR050, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France.

Published: May 2012

The role of the total solids (TS) content on anaerobic digestion was investigated in batch reactors. A range of TS contents from 10% to 35% was evaluated, four replicates were performed. The total methane production slightly decreased with TS concentrations increasing from 10% to 25% TS. Two behaviors were observed at 30% TS: two replicates had similar performances to that at 25% TS; for the two other replicates, the methane production was inhibited as observed at 35% TS. This difference suggested that 30% TS content corresponded to a threshold of the solids content, above which methanogenesis was strongly inhibited. The Anaerobic Digestion Model No. 1 (ADM1) was used to describe the experimental data. The effects of hydrolysis step and liquid/gas mass transfer were particularly investigated. The simulations showed that mass transfer limitation could explain the low methane production at high TS, and that hydrolysis rate constants slightly decreased with increasing TS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.01.174DOI Listing

Publication Analysis

Top Keywords

solids content
12
anaerobic digestion
12
mass transfer
12
methane production
12
total solids
8
transfer limitation
8
content
4
content drives
4
drives high
4
high solid
4

Similar Publications

Challenges of cannabidiol determination in emulsified cosmetics and application of solid-phase extraction followed by HPLC-UV-MS/MS.

Anal Bioanal Chem

January 2025

Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Prague, Czech Republic.

The recent surge in popularity of cannabidiol-infused products extends beyond food and supplements to the cosmetic industry. Accurate labeling remains a significant concern, as many products fail to meet advertised cannabidiol content and/or contain psychoactive tetrahydrocannabinol above the permissible levels. In this work, we present the use of an HPLC-UV-MS/MS method for the quantification of five major cannabinoids (cannabidiol, cannabidiolic acid, tetrahydrocannabinol, tetrahydrocannabinolic acid, and cannabigerol) in oil-in-water cosmetic emulsions.

View Article and Find Full Text PDF

In laser safety eyewear, due to the lack of complete blocking of ultraviolet and infrared rays, we proposed a structure based on one-dimensional multilayer composed of several layers of silicon dioxide and zirconium dioxide materials alternately behind polycarbonate lens. It is find out that the acceptance angle range to the photonic crystal is 0 to 39°. This incident angle range corresponds to the band gap of the photonic crystal.

View Article and Find Full Text PDF

Synergistic production of nitrogen-rich hydrochar and solid biofuels via co-hydrothermal carbonization of microalgae and macroalgae: when nitrogen circularity matters.

Environ Res

January 2025

Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:

This work explores the synergies between N-rich (Chlorella pyrenoidosa) and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.

View Article and Find Full Text PDF

Deaggregation of micronized insoluble drugs by incorporating mannitol form α.

Int J Pharm

January 2025

School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 PR China. Electronic address:

Micronization is frequently employed to increase the dissolution of poorly soluble drugs, but it easily led to powder aggregation and difficult to mix well on the micro level with poor content uniformity and erratic dissolution behavior. Mannitol is the most commonly used pharmaceutical excipient, and its β form (β-mannitol) is commercially available and extensively investigated, whereas form α (α-mannitol) remain poorly understood. Here, this study demonstrated that α-mannitol could significantly eliminate aggregation phenomena of micronized drugs (i.

View Article and Find Full Text PDF

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!