Transcriptional profiling by sequencing of oropharyngeal cancer.

Mayo Clin Proc

Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Published: March 2012

Objective: To compare full transcriptome expression levels of matched tumor and normal samples from patients with oropharyngeal carcinoma stratified by known tumor etiologic factors.

Patients And Methods: Full transcriptome sequencing was analyzed for 10 matched tumor and normal tissue samples from patients with previously untreated oropharyngeal carcinoma. Transcriptomes were analyzed using massively parallel messenger RNA sequencing and validated using the NanoString nCounter system. Global gene expression levels were compared in samples grouped by smoking status and human papillomavirus status. This study was completed between June 10, 2010, and June 30, 2011.

Results: Global gene expression analysis indicated tumor tissue from former smokers grouped more closely to the never smokers than the current smokers. Pathway analysis revealed alterations in the expression of genes involved in the p53 DNA damage-repair pathway, including CHEK2 and ATR, which display patterns of increased expression that is associated with human papillomavirus-negative current smokers rather than former or never smokers.

Conclusion: These findings support the application of messenger RNA sequencing technology as an important clinical tool for more accurately stratifying patients based on individual tumor biology with the goal of improving our understanding of tumor prognosis and treatment response, ultimately leading to individualized patient care strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538409PMC
http://dx.doi.org/10.1016/j.mayocp.2011.10.008DOI Listing

Publication Analysis

Top Keywords

full transcriptome
8
expression levels
8
matched tumor
8
tumor normal
8
samples patients
8
oropharyngeal carcinoma
8
messenger rna
8
rna sequencing
8
global gene
8
gene expression
8

Similar Publications

Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942.

Int J Biol Macromol

January 2025

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:

In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.

View Article and Find Full Text PDF

Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening.

Int J Biol Macromol

January 2025

Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China. Electronic address:

Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases.

View Article and Find Full Text PDF

Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior.

View Article and Find Full Text PDF

Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.

View Article and Find Full Text PDF

The Effector Protease FgTPP1 Suppresses Immune Responses and Facilitates Fusarium Head Blight Disease.

Mol Plant Microbe Interact

January 2025

USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, Indiana, United States;

Most plant pathogens secrete effector proteins to circumvent host immune responses, thereby promoting pathogen virulence. One such pathogen is the fungus , which causes Fusarium Head Blight (FHB) disease on wheat and barley. Transcriptomic analyses revealed that expresses many candidate effector proteins during early phases of the infection process, some of which are annotated as proteases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!