Regulatory networks orchestrated by key transcription factors (TFs) have been proposed to play a central role in the determination of stem cell states. However, the master transcriptional regulators of adult stem cells are poorly understood. We have identified two TFs, Slug and Sox9, that act cooperatively to determine the mammary stem cell (MaSC) state. Inhibition of either Slug or Sox9 blocks MaSC activity in primary mammary epithelial cells. Conversely, transient coexpression of exogenous Slug and Sox9 suffices to convert differentiated luminal cells into MaSCs with long-term mammary gland-reconstituting ability. Slug and Sox9 induce MaSCs by activating distinct autoregulatory gene expression programs. We also show that coexpression of Slug and Sox9 promotes the tumorigenic and metastasis-seeding abilities of human breast cancer cells and is associated with poor patient survival, providing direct evidence that human breast cancer stem cells are controlled by key regulators similar to those operating in normal murine MaSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305806 | PMC |
http://dx.doi.org/10.1016/j.cell.2012.02.008 | DOI Listing |
Oncogene
November 2022
Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2022
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. Electronic address:
Background & Aims: Metastasis is found in most advanced hepatocellular carcinoma (HCC) patients, and it drives tumor recurrence and systemic failure. There is no effective treatment owing to its complex biological features. Many of the molecular drivers of metastasis are crucial players in normal physiology but behave unconventionally during cancer progression.
View Article and Find Full Text PDFCancers (Basel)
February 2022
Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers mainly due to spatial obstacles to complete resection, early metastasis and therapy resistance. The molecular events accompanying PDAC progression remain poorly understood. SOX9 is required for maintaining the pancreatic ductal identity and it is involved in the initiation of pancreatic cancer.
View Article and Find Full Text PDFInt J Mol Sci
August 2021
School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
Patients with advanced-stage non-small-cell lung cancer (NSCLC) are susceptible to malnutrition and develop folate deficiency (FD). We previously found that folate deprivation induces drug resistance in hepatocellular carcinoma; here, we assessed whether disrupted cytoplasmic folate metabolism could mimic FD-induced metastasis and affect the sensitivity of NSCLC cells to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). We examined whether cytosolic folate metabolism in NSCLC cells was disrupted by FD or the folate metabolism blocker pemetrexed for 1-4 weeks.
View Article and Find Full Text PDFFront Cell Dev Biol
June 2021
Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy.
Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!