Magnetic resonance imaging (MRI) is presently the method of choice for detection of brain tumors. However, MRI alone is not conclusive. As the commonly used contrast agents do not bind to the cells and are not taken up into the cells, they generally do accumulate in regions where the blood-brain-barrier is disrupted. While this can be brain tumors (WHO grade II-III and above), it can also be inflammations. A cell-directed contrast agent would be a great asset not only to avoid unnecessary brain biopsies, but also to achieve sharper tumor margins during intraoperative MRI. The gastrin/cholecystockinin receptor found in the brain and the intestinal tract is a potential target for a cell-directed contrast agent. The receptor has already been found in human glioma cell lines and autocrine stimulation has also been demonstrated for the receptor and its ligand gastrin. We coupled the correct and a mutant 17-amino-acid gastrin to gadolinium -1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid (an MRI contrast agent) and rhodamine isothiocyanate (a fluorescent dye). Using confocal laser scanning microscopy and magnetic resonance relaxometry experiments we found cytoplasmic uptake of the correct gastrin conjugate into human U373 glioma cells. Surprisingly, the mutant conjugate was also taken up into the cells in a similar pattern, albeit to a lesser degree. Both conjugates showed no cytotoxicity. These conjugates show potential for future use in magnetic resonance imaging studies of brain tumors after systemic or intraoperative local application. The cytoplasm specificity of the conjugates also makes it a potential building block for the design of future cytoplasmdirected imaging and therapeutic conjugates.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157340612800493566DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
16
resonance imaging
12
brain tumors
12
contrast agent
12
contrast agents
8
cell-directed contrast
8
conjugates potential
8
brain
6
contrast
5
novel gastrin
4

Similar Publications

Cost Effectiveness of Colorectal Cancer Screening Strategies in Middle- and High-Income Countries: A Systematic Review.

J Gastroenterol Hepatol

January 2025

Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Background And Aim: Colorectal cancer (CRC) is a significant global health burden, and screening can greatly reduce CRC incidence and mortality. Previous studies investigated the economic effects of CRC screening. We performed a systematic review to provide the cost-effectiveness of CRC screening strategies across countries with different income levels.

View Article and Find Full Text PDF

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!