A baby girl, born at term, presented with severe cyanosis and received oxygen supplementation. Consecutive arterial blood gas analysis showed a pronounced right shift of the saturation curve, suggesting the presence of a hemoglobin (Hb) variant. A new (G)γ-globin variant was detected, namely HBG2:c.308G, which we have named Hb F-Sarajevo, the city from where the baby's parents originate. This A to C transversion exists in cis to the common (A)γ(T) and the resulting mutant Hb molecule exhibits very low oxygen affinity and cooperativity. Its analogue in the β-globin gene is Hb Kansas [β102(G4)Asn→Thr, AAC>ACC].

Download full-text PDF

Source
http://dx.doi.org/10.3109/03630269.2012.655872DOI Listing

Publication Analysis

Top Keywords

gγ-globin variant
8
low oxygen
8
oxygen affinity
8
neonatal cyanosis
4
cyanosis gγ-globin
4
variant causing
4
causing low
4
affinity f-sarajevo
4
f-sarajevo [gγ102g4asn→thr
4
[gγ102g4asn→thr aac>acc]
4

Similar Publications

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.

View Article and Find Full Text PDF

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

A wealth of research focused on African American populations has connected rs2814778-CC ("Duffy-null") to decreased neutrophil (neutropenia) and leukocyte counts (leukopenia). While it has been proposed that this variant is benign, prior studies have shown that the misinterpretation of Duffy-null associated neutropenia and leukopenia can lead to unnecessary bone marrow biopsies, inequities in cytotoxic and chemotherapeutic treatment courses, under-enrollment in clinical trials, and other disparities. To investigate the phenotypic correlates of Duffy-null status, we conducted a phenome-wide association study (PheWAS) across more than 1,400 clinical conditions in All of Us, the Vanderbilt University Medical Center's Biobank, and the Million Veteran Program.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!