Preimplantation genetic diagnosis (PGD) is gradually widely used in prevention of gene diseases and chromosomal abnormalities. Much improvement has been achieved in biopsy technique and molecular diagnosis. Blastocyst biopsy can increase diagnostic accuracy and reduce allele dropout. It is cost-effective and currently plays an important role. Whole genome amplification permits subsequent individual detection of multiple gene loci and screening all 23 pairs of chromosomes. For PGD of chromosomal translocation, fluorescence in-situ hybridization (FISH) is traditionally used, but with technical difficulty. Array comparative genomic hybridization (CGH) can detect translocation and 23 pairs of chromosomes that may replace FISH. Single nucleotide polymorphisms array with haplotyping can further distinguish between normal chromosomes and balanced translocation. PGD may shorten time to conceive and reduce miscarriage for patients with chromosomal translocation. PGD has a potential value for mitochondrial diseases. Preimplantation genetic haplotyping has been applied for unknown mutation sites of single gene disease. Preimplantation genetic screening (PGS) using limited FISH probes in the cleavage-stage embryo did not increase live birth rates for patients with advanced maternal age, unexplained recurrent abortions, and repeated implantation failure. Polar body and blastocyst biopsy may circumvent the problem of mosaicism. PGS using blastocyst biopsy and array CGH is encouraging and merit further studies. Cryopreservation of biopsied blastocysts instead of fresh transfer permits sufficient time for transportation and genetic analysis. Cryopreservation of embryos may avoid ovarian hyperstimulation syndrome and possible suboptimal endometrium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283069PMC
http://dx.doi.org/10.5653/cerm.2011.38.3.126DOI Listing

Publication Analysis

Top Keywords

preimplantation genetic
16
chromosomal translocation
12
blastocyst biopsy
12
genetic diagnosis
8
gene diseases
8
diseases chromosomal
8
pairs chromosomes
8
translocation pgd
8
genetic
5
translocation
5

Similar Publications

Editorial: Fertilization and early embryogenesis: from research to clinical practice.

Front Cell Dev Biol

January 2025

Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, United States.

View Article and Find Full Text PDF

A novel frameshift mutation of SOX10 identified in Waardenburg syndrome type 2.

Hum Mol Genet

January 2025

Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, No. 83 Fenyang Road, Xuhui District, Shanghai 200031, China.

Waardenburg syndrome type 2 (WS2) is an autosomal dominant disorder characterized by congenital sensorineural hearing loss, blue iris, and abnormal pigmentation of the hair and skin. WS2 is genetically heterogeneous, often resulting from pathogenic mutations in SOX10 gene. We identified a novel heterozygous frameshift mutation in SOX10 (NM_006941.

View Article and Find Full Text PDF

Objective: To compare the cost-effectiveness of a gestational carrier to a uterine transplantation in the treatment of absolute uterine-factor infertility.

Design: We performed a cost-effectiveness analysis using a decision-tree mathematical model comparing a gestational carrier to a uterine transplantation.

Subjects: Published literature was used to derive costs for solid organ transplant, immunosuppression, gestational carrier obtainment, in vitro fertilization, preimplantation genetic testing, and frozen embryo transfer.

View Article and Find Full Text PDF

PGT-A: what's it for, what's wrong?

J Assist Reprod Genet

January 2025

Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt.

PGT-A, what's it for? Considering the increase in fetal aneuploidies with a woman's age and the high number of miscarriages associated with fetal karyotype anomalies, the concept of selecting IVF embryos based on their karyotype in order to transfer only euploid embryos and eliminate aneuploid ones was proposed. Preimplantation genetic testing for aneuploidy (PGT-A) was then established, nearly 30 years ago, with the expectation that the transfer of euploid embryos would lead to a significant improvement in medically assisted reproduction (MAR) outcomes. PGT-A, what's wrong? Despite the practice and widespread use, PGT-A has not consistently proven its effectiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!