Hepcidin destabilizes atherosclerotic plaque via overactivating macrophages after erythrophagocytosis.

Arterioscler Thromb Vasc Biol

Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Shandong University, Jinan, Shandong, China.

Published: May 2012

AI Article Synopsis

  • The study aimed to investigate how the protein hepcidin affects the stability of atherosclerotic plaques.
  • In experiments with mice lacking a specific protein, overexpression of hepcidin led to increased macrophage infiltration into plaques and reduced levels of collagen and smooth muscle cells, making the plaques less stable.
  • Hepcidin was found to enhance inflammation and oxidative stress in macrophages, particularly in the presence of oxidized low-density lipoprotein (ox-LDL), and contributed to the destabilization of atherosclerotic plaques through the retention of iron.

Article Abstract

Objective: To explore a direct and causal relationship between vascular hepcidin and atherosclerotic plaque stability.

Methods And Results: Accelerated atherosclerotic lesions were established by perivascular collar placement in apolipoprotein E-deficient (ApoE(-/-)) mice. Adenoviral overexpression of hepcidin in the carotid artery during plaque formation enhanced intraplaque macrophage infiltration and suppressed the contents of collagen and vascular smooth muscle cells, whereas hepcidin shRNA treatment exerts opposite effects. The overexpression or knockdown of hepcidin did not affect plaque lipid deposition but increased or decreased oxidized low-density lipoprotein (ox-LDL) levels within intraplaque macrophages. In cultured macrophages, ox-LDL not only increased reactive oxygen species formation, inflammatory cytokine production, and apoptosis but also upregulated hepcidin expression. However, hepcidin did not exaggerate the ox-LDL-induced activation of macrophages until an onset of erythrophagocytosis. Whereas hepcidin was critical for the upregulation of L-ferritin and H-ferritin in both ox-LDL-treated erythrophagocytosed macrophages and atherosclerotic plaques, the adding of iron chelators suppressed the intracellular lipid accumulation, reactive oxygen species formation, inflammatory cytokine expression, and apoptosis in erythrophagocytosed macrophages.

Conclusions: Hepcidin promotes plaque destabilization partly by exaggerating inflammatory cytokine release, intracellular lipid accumulation, oxidative stress, and apoptosis in the macrophages with iron retention.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.112.246108DOI Listing

Publication Analysis

Top Keywords

inflammatory cytokine
12
hepcidin
9
atherosclerotic plaque
8
reactive oxygen
8
oxygen species
8
species formation
8
formation inflammatory
8
intracellular lipid
8
lipid accumulation
8
macrophages
6

Similar Publications

Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.

View Article and Find Full Text PDF

Obesity is a metabolic disease that is marked by excessive fat accumulation and is objectively defined as a body mass index (BMI) ≥30 kg/m2. Obesity is associated with several other comorbidities, including psoriasis, which is a chronic autoimmune skin disease. Adipocytes produce pro-inflammatory signaling molecules, namely adipokines and classic cytokines, that drive increased inflammation axnd may contribute to the pro-inflammatory pathways driving psoriasis disease pathogenesis.

View Article and Find Full Text PDF

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!