Dissociated cell cultures of the rodent hippocampus have become a standard model for studying many facets of neural development. The cultures are quite homogeneous and it is relatively easy to express green fluorescent protein (GFP)-tagged proteins by transfection. Because the cultures are essentially two dimensional, there is no need to acquire images at multiple focal planes. For capturing rapid subcellular events at high resolution, as described here, one must maximize weak signals and reduce background fluorescence. Thus, these methods differ in several respects from those used for time-lapse imaging. Lipofectamine-mediated transfection yields a higher level of expression than does transfection with a nucleofection device. Images are usually collected with a spinning-disk confocal microscope, which improves the signal-to-noise ratio. In addition, we use an imaging medium designed to minimize background fluorescence rather than to enhance long-term cell survival. It is also important to select cultures at an appropriate stage of development. In our hands, lipofectamine-based transfection works best on cells between 3 and 10 d after plating. GFP-based fluorescence can be observed as early as 4 h after adding the DNA/lipid complexes to the cells, but expression usually increases over the next ∼12 h and remains steady for days. The ratio of DNA to lipid is critical; to lower expression levels of the tagged construct, we use a combination of expression vector and empty plasmid, keeping the DNA amount constant. An example is included to illustrate the imaging of the microtubule-based vesicular transport of membrane proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438678 | PMC |
http://dx.doi.org/10.1101/pdb.prot068247 | DOI Listing |
Talanta
January 2025
Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:
Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.
View Article and Find Full Text PDFBiomater Sci
January 2025
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Ha Noi, Vietnam.
With the advancement of photodynamic therapy, various photosensitizers have been developed to enhance the efficacy of cancer treatment while minimizing side effects. Recently, near-infrared organic fluorophores have gained significant attention as promising photodynamic agents for cancer therapy due to their tunable photophysical properties, structural versatility, good biocompatibility, high biosafety, and synthetic flexibility. In particular, near-infrared organic photosensitizers offer several notable advantages, including deep tissue penetration, a low fluorescence background for bioimaging, and reduced damage to biological tissues compared to traditional visible-spectrum photosensitizers.
View Article and Find Full Text PDFJ Oral Microbiol
January 2025
Periodontal Research Group, Department of Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, UK.
Background: is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release.
View Article and Find Full Text PDFZebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Prostate-Specific Membrane Antigen (PSMA) is a highly expressed and structurally unique target specific to prostate cancer (PCa). Diagnostic and therapeutic approaches in nuclear medicine, coupling PSMA ligands with radionuclides, have shown significant clinical success. PSMA-PET/CT effectively identifies tumors and metastatic lymph nodes for imaging purposes, while -PSMA-617 (Pluvicto) has received FDA approval for treating metastatic castration-resistant PCa (mCRPC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!