A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. | LitMetric

AI Article Synopsis

  • Organelles like RNA processing bodies, Golgi bodies, peroxisomes, and mitochondria rely on actin filaments for transport but pause at cortical microtubules during their movement.
  • The study shows that removing microtubules does not significantly impact how often these organelles pause, suggesting that pausing is a common feature of their motility.
  • The research indicates that while microtubules help form stable junctions with the endoplasmic reticulum (ER), they are not necessary for the pausing process, potentially aiding interactions between the ER and moving organelles.

Article Abstract

Organelle motility, essential for cellular function, is driven by the cytoskeleton. In plants, actin filaments sustain the long-distance transport of many types of organelles, and microtubules typically fine-tune the motile behavior. In shoot epidermal cells of Arabidopsis thaliana seedlings, we show here that a type of RNA granule, the RNA processing body (P-body), is transported by actin filaments and pauses at cortical microtubules. Interestingly, removal of microtubules does not change the frequency of P-body pausing. Similarly, we show that Golgi bodies, peroxisomes, and mitochondria all pause at microtubules, and again the frequency of pauses is not appreciably changed after microtubules are depolymerized. To understand the basis for pausing, we examined the endoplasmic reticulum (ER), whose overall architecture depends on actin filaments. By the dual observation of ER and microtubules, we find that stable junctions of tubular ER occur mainly at microtubules. Removal of microtubules reduces the number of stable ER tubule junctions, but those remaining are maintained without microtubules. The results indicate that pausing on microtubules is a common attribute of motile organelles but that microtubules are not required for pausing. We suggest that pausing on microtubules facilitates interactions between the ER and otherwise translocating organelles in the cell cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcs025DOI Listing

Publication Analysis

Top Keywords

microtubules
13
actin filaments
12
rna processing
8
bodies peroxisomes
8
golgi bodies
8
endoplasmic reticulum
8
tubule junctions
8
cortical microtubules
8
organelles microtubules
8
removal microtubules
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!