Uncertainty in arterial input function (AIF) estimation is one of the major errors in the quantification of dynamic contrast-enhanced MRI. A blind source separation algorithm was proposed to determine the AIF by selecting the voxel time course with maximum purity, which represents a minimal contamination from partial volume effects. Simulations were performed to assess the partial volume effect on the purity of AIF, the estimation accuracy of the AIF, and the influence of purity on the derived kinetic parameters. In vivo data were acquired from six patients with hypopharyngeal cancer and eight rats with brain tumor. Results showed that in simulation the AIF with the highest purity is closest to the true AIF. In patients, the manually selection had reduced purity, which could lead to underestimations of K(trans) and V(e) and an overestimation of V(p) when compared with those obtained by the proposed blind source separation algorithm. The derived kinetic parameters in the tumor were more susceptible to the changes in purity when compared with those in the muscle. The animal experiment demonstrated good reproducibility in blind source separation-AIF derived parameters. In conclusion, the blind source separation method is feasible and reproducible to identify the voxel with the tracer concentration time course closest to the true AIF.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.24144DOI Listing

Publication Analysis

Top Keywords

blind source
16
source separation
12
arterial input
8
input function
8
dynamic contrast-enhanced
8
contrast-enhanced mri
8
aif estimation
8
separation algorithm
8
time course
8
partial volume
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!