A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. | LitMetric

Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways. Here a total of 14 constitutive promoters from S. cerevisiae were cloned and characterized using a green fluorescent protein (GFP) as a reporter in a 2 µ vector pRS426, under varying glucose and oxygen concentrations. The strengths of these promoters varied no more than sixfold in the mean fluorescence intensity of GFP, with promoter TEF1p being the strongest and promoter PGI1p the weakest. As an example of application for these promoters in metabolic engineering, the genes involved in xylan degradation and zeaxanthin biosynthesis were subsequently cloned under the control of promoters with medium to high strength and assembled into a single pathway. The corresponding construct was transformed to a S. cerevisiae strain integrated with a D-xylose utilizing pathway. The resulting strain produced zeaxanthin with a titer of 0.74 ± 0.02 mg/L directly from birchwood xylan.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24481DOI Listing

Publication Analysis

Top Keywords

constitutive promoters
8
pathway engineering
8
saccharomyces cerevisiae
8
promoters
7
cerevisiae
5
cloning characterization
4
characterization panel
4
panel constitutive
4
promoters applications
4
pathway
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!