The ability of engineered antibodies to rapidly and selectively target tumors that express their target antigen makes them well suited for use as radioimaging tracers. The combination of molecular size and bivalent nature makes diabody molecules a particularly promising structure for use as radiotracers for diagnostic imaging. Previous data have demonstrated that the anti-HER2 C6.5 diabody (C6.5db) is an effective radiotracer in preclinical models of HER2-positive cancer. The aim of this study was to evaluate the impact on radiotracer performance, associated with expressing the C6.5db in the Pichia pastoris (P-C6.5db) system as compared to Escherichia coli (E. C6.5db). Glycosylation of P-C6.5db led to faster blood clearance and lower overall tumor uptake than seen with E. coli-produced C6.5db. However, P-C6.5db achieved high tumor/background ratios that are critical for effective imaging. Dosimetry measurements determined in this study for both (124)I-P-C6.5db and (124)I-E-C6.5db suggest that they are equivalent to other radiotracers currently being administered to patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761356PMC
http://dx.doi.org/10.1007/s13277-012-0361-zDOI Listing

Publication Analysis

Top Keywords

c65 diabody
8
impact expression
4
expression system
4
system function
4
function c65
4
diabody pet
4
pet radiotracer
4
radiotracer ability
4
ability engineered
4
engineered antibodies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!