Although sEH inhibitors are well studied in inflammatory and cardiovascular diseases, their effects on gliomas are unclear. In this study, we investigated the effects of t-AUCB, a more potent and selective sEH inhibitor, on U251 and U87 human glioblastoma cell lines and the HepG2 human hepatocellular carcinoma cell line. Our results showed that t-AUCB efficiently inhibited sEH activities in all three cell lines (the inhibition rate was more than 80% in each) and suppressed U251 and U87 cell growth in a dose-dependent manner, but exhibited no cell growth inhibition on HepG2. We detected high levels of phosphorylated NF-κB-p65 (Ser536) in t-AUCB-treated U251 and U87 cells, and then found that the NF-κB inhibitor PDTC can completely abolish t-AUCB-induced growth inhibition. This indicated that t-AUCB suppresses U251 and U87 cell growth by activating NF-κB-p65. Moreover, we found that t-AUCB induces cell-cycle G0/G1 phase arrest by regulating Cyclin D1 mRNA and protein levels and CDC2 (Thr161) phosphorylation level. We propose to further test this promising reagent for its anti-glioma activity in clinical relevant orthotopic brain glioma models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-012-0841-4DOI Listing

Publication Analysis

Top Keywords

cell growth
16
u251 u87
16
seh inhibitor
8
human glioblastoma
8
glioblastoma cell
8
growth activating
8
activating nf-κb-p65
8
cell lines
8
u87 cell
8
growth inhibition
8

Similar Publications

Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.

Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.

View Article and Find Full Text PDF

Sex reversal induced by 17β-estradiol may be achieved by regulating the neuroendocrine system of the Pacific white shrimp Penaeus vannamei.

BMC Genomics

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!