Gliclazide (GLI), a poorly water-soluble antidiabetic, was transformed into a glassy state by melt quench technique in order to improve its physicochemical properties. Chemical stability of GLI during formation of glass was assessed by monitoring thin-layer chromatography, and an existence of amorphous form was confirmed by differential scanning calorimetry and X-ray powder diffractometry. The glass transition occurred at 67.5°C. The amorphous material thus generated was examined for its in vitro dissolution performance in phosphate buffer (pH 6.8). Surprisingly, amorphous GLI did not perform well and was unable to improve the dissolution characteristics compared to pure drug over entire period of dissolution studies. These unexpected results might be due to the formation of a cohesive supercooled liquid state and structural relaxation of amorphous form toward the supercooled liquid region which indicated functional inability of amorphous GLI from stability point of view. Hence, stabilization of amorphous GLI was attempted by elevation of T(g) via formation of solid dispersion systems involving comprehensive antiplasticizing as well as surface adsorption mechanisms. The binary and ternary amorphous dispersions prepared with polyvinylpyrrolidone K30 (as antiplasticizer for elevation of T (g)) and Aerosil 200® and/or Sylysia® 350 (as adsorbent) in the ratio of 1:1:1 (w/w) using kneading and spray-drying techniques demonstrated significant enhancement in rate and extent of dissolution of drug initially. During accelerated stability studies, ternary systems showed no significant reduction in drug dissolution performance over a period of 3 months indicating excellent stabilization of amorphous GLI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364379 | PMC |
http://dx.doi.org/10.1208/s12249-012-9760-0 | DOI Listing |
Gels
September 2022
National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest, Romania.
The study and discovery of bioactive compounds and new formulations as potential tools for promoting the repair of dermoepidermal tissue in wound healing is of continuing interest. We have developed a new formulation of amorphous hydrogel based on sodium alginate (NaAlg); type I collagen, isolated by the authors from silver carp tails (COL); glycerol (Gli); Aloe vera gel powder (AV); and silver nanoparticles obtained by green synthesis with aqueous extract (AgNPs@CIN) and vitamin C, respectively. The gel texture of the amorphous hydrogels was achieved by the addition of Aloe vera, demonstrated by a rheological analysis.
View Article and Find Full Text PDFSci Total Environ
December 2015
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
A more than 250 year-old mine dump was studied to document the products of long-term arsenopyrite oxidation under natural conditions in a coarse-grained mine waste dump and to evaluate the environmental hazards associated with this material. Using complementary mineralogical and chemical approaches (SEM/EDS/WDS, XRD, micro-Raman spectroscopy, pore water analysis, chemical extraction techniques and thermodynamic PHREEQC-2 modeling), we documented the mineralogical/geochemical characteristics of the dumped arsenopyrite-rich material and environmental stability of the newly formed secondary minerals. A distinct mineralogical zonation was found (listed based on the distance from the decomposed arsenopyrite): scorodite (locally associated with native sulfur pseudomorphs) plus amorphous ferric arsenate (AFA/pitticite), kaňkite, As-bearing ferric (hydr)oxides and jarosite.
View Article and Find Full Text PDFAAPS PharmSciTech
June 2012
Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad, Maharashtra, 415124, India.
Gliclazide (GLI), a poorly water-soluble antidiabetic, was transformed into a glassy state by melt quench technique in order to improve its physicochemical properties. Chemical stability of GLI during formation of glass was assessed by monitoring thin-layer chromatography, and an existence of amorphous form was confirmed by differential scanning calorimetry and X-ray powder diffractometry. The glass transition occurred at 67.
View Article and Find Full Text PDFAppl Spectrosc
June 2009
Institute of Geology, Academy of Science of the Czech Republic, v.v.i., Rozvojová 269, 165 00 Prague 6, Czech Republic.
In this paper, we demonstrate that combined application of X-ray diffraction (XRD), electron microscope/microprobe analysis (EMPA), and Raman microspectroscopy is an available and powerful approach for identification and characterization of iron arsenate minerals in complex environmental samples. Arsenic-rich material from the medieval mining dump close to the Giftkies mine in the Jáchymov ore district (Czech Republic) has been studied. Scorodite, kankite, amorphous iron arsenate (pitticite), and, to a lesser extent, native sulfur were determined in the studied samples as products of low-temperature arsenopyrite weathering.
View Article and Find Full Text PDFEur J Pharm Sci
September 2004
Dipartimento di Chimica Farmaceutica e Tossicologica, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
This study was carried out with the aim to optimize the pharmacological profile of gliquidone (GLI)--a poorly bioavailable hypoglycaemic agent sparingly soluble in water--through complexation with cyclodextrins. In order to increase the apparent solubility of GLI, two cyclodextrins, namely beta-cyclodextrin (betaCD) and hydroxypropyl-beta-cyclodextrin (HPbetaCD), were tested. The effect of cyclodextrin addition on the aqueous solubility of GLI was evaluated by the phase solubility method at different pH values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!