Hydrogels are increasingly being investigated as a means to implant cells for tissue engineering. One way to further enhance the repair response would be to combine the hydrogel cell carrier with gene transfer. Gene therapy, using adenoviral vectors, is an effective way to provide transient delivery of bioactive factors. However, current protocols require further optimization, especially if they are to be transferred into the clinic. This study opted to compare the efficiency of protocols for standard two-dimensional (2D) versus three-dimensional (3D), adenoviral-mediated, transduction of human mesenchymal stem cells. Two different multiplicities of infection were tested. After encapsulation in fibrin, alginate or agarose, cells were cultured for 28 days. Transduction in 3D showed a much higher efficiency, compared to standard 2D transduction protocols. In 3D, the amount of transgene produced was significantly higher, for every condition investigated. Furthermore, transduction in 3D does not require a cell culture step and can be conducted within the operating theatre. In conclusion, it was demonstrated that 3D transduction, using adenoviral vectors, is superior to standard transduction protocols in 2D. It therefore, might help increasing its administration in tissue engineering and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-012-9522-y | DOI Listing |
Bioact Mater
May 2025
Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511400, China.
Tumor microenvironment governs various therapeutic tolerability of cancer such as ferroptosis and immunotherapy through rewiring tumor metabolic reprogramming like Warburg metabolism. Highly expressed carbonic anhydrases (CA) in tumor that maintaining the delicate metabolic homeostasis is thus the most potential target to be modulated to resolve the therapeutic tolerability. Hence, in this article, a self-healable and pH-responsive spermidine/ferrous ion hydrogel loaded with CA inhibitor (acetazolamide, ACZ) and glucose oxidase (ACZ/GOx@SPM-HA Gel) was fabricated through the Schiff-base reaction between spermidine-dextran and oxidized hyaluronic acid, along with ferrous coordination.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Institute of Future Biophysics, Institutskiy per. 9, Dolgoprudny, Moscow Oblast, Moscow, Russia.
This paper describes a method for determining the cytotoxicity of chemical compounds based on the detection of fluorescent proteins-in this case, green fluorescent protein (GFP) and red fluorescent protein (RFP), which are released into the medium from dead cells. This method is similar in principle to the lactate dehydrogenase test (LDH test), but it does not require a reaction with a chromogenic substrate. This method also makes it possible to independently determine the viability of different lines when used in cocultures.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!