Background: Wearing high heel shoes is thought to increase an individual's likelihood of experiencing a lateral ankle sprain. The purpose of this study was to evaluate the influence of heel height on frontal plane kinematics, kinetics, and electromyographic (EMG) activity of the ankle joint during walking.
Methods: Eighteen healthy women participated. Three-dimensional kinematics, ground reaction forces, and EMG signals of the tibialis anterior (TA) and peroneus longus (PL) were recorded as subjects ambulated in high (9.5~cm) and low (1.3~cm) heel shoes at a self-selected walking velocity. Peak ankle plantarflexion, peak ankle inversion angle, and the peak ankle inversion moment during the stance phase of gait were evaluated. The EMG variables of interest consisted of the normalized average signal amplitude of the TA and PL during the first 50% of the stance phase. Paired t-tests were used to assess differences between the two shoe conditions.
Results: When compared to the low heel condition, wearing high heels resulted in significantly greater peak ankle plantarflexion and inversion angles (p < 0.001). In addition, the peak inversion moment and PL muscle activation was found to be significantly higher in the high heel condition (p < 0.001). No difference in TA muscle activity was found between shoe conditions (p = 0.30).
Conclusion: The plantarflexed and inverted posture when wearing high heels may increase an individual's risk for experiencing a lateral ankle sprain.
Clinical Relevance: Data obtained from this investigation highlights the need for increased awareness and proper education related to the wearing of high heel shoes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3113/FAI.2012.0064 | DOI Listing |
Sensors (Basel)
January 2025
Laboratory of Adaptive Lighting Systems and Visual Processing, Technical University of Darmstadt, Hochschulstr. 4a, 64289 Darmstadt, Germany.
Thermopile sensor arrays provide a sufficient counterbalance between person detection and localization while preserving privacy through low resolution. The latter is especially important in the context of smart building automation applications. Current research has shown that there are two machine learning-based algorithms that are particularly prominent for general object detection: You Only Look Once (YOLOv5) and Detection Transformer (DETR).
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Human Performance Laboratory, Centre of Space Bio-Medicine, Department of Medicine Systems, University of Rome Tor Vergata, 00133 Rome, Italy.
Traditional methods for evaluating tennis technique, such as visual observation and video analysis, are often subjective and time consuming. On the other hand, a quick and accurate assessment can provide immediate feedback to players and contribute to technical development, particularly in less experienced athletes. This study aims to validate the use of a single inertial measurement system to assess some relevant technical parameters of amateur players.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.
Background: Continuous glucose monitoring (CGM) improves glycemic control and quality of life. Data on glycemic indices and fear of hypoglycemia (FoH) in newly diagnosed T1DM patients are limited.
Aim: To assess the impact of initiating intermittently scanned CGM (isCGM) within 1-6 months of diagnosis on glycemic control and FoH in adults with T1DM.
Front Physiol
January 2025
China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
This study aims to assess the reliability and accuracy of a novel portable cardiopulmonary function meter, "Booster," developed by our research group, across various exercise intensities and modalities. The study was segmented into reliability and validity assessments. Twenty-two male participants underwent reliability testing, conducting two sequential tests on a treadmill while wearing the Booster to measure VO and VE among other parameters at increasing intensities.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:
The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!