This research investigates the synthesis and inhibitory potency of a series of novel dipeptidyl allyl sulfones as clan CA cysteine protease inhibitors. The structure of the inhibitors consists of a R(1)-Phe-R(2)-AS-Ph scaffold (AS = allyl sulfone). R(1) was varied with benzyloxycarbonyl, morpholinocarbonyl, or N-methylpiperazinocarbonyl substituents. R(2) was varied with either Phe of Hfe residues. Synthesis involved preparation of vinyl sulfone analogues followed by isomerization to allyl sulfones using n-butyl lithium and t-butyl hydroperoxide. Sterics, temperature and base strength were all factors that affected the formation and stereochemistry of the allyl sulfone moiety. The inhibitors were assayed with three clan CA cysteine proteases (cruzain, cathepsin B and calpain I) as well as one serine protease (trypsin). The most potent inhibitor, (E)-Mu-Phe-Hfe-AS-Ph, displayed at least 10-fold selectivity for cruzain over clan CA cysteine proteases cathepsin B and calpain I with a (kobs)/[I] of 6080 ± 1390 M(-1)s(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/14756366.2011.651466 | DOI Listing |
Trends Biochem Sci
December 2024
Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193 Bellaterra, Spain. Electronic address:
Ubiquitin (Ub) and ubiquitin-like (UbL) modifications are critical regulators of multiple cellular processes in eukaryotes. These modifications are dynamically controlled by proteases that balance conjugation and deconjugation. In eukaryotes, these proteases include deubiquitinases (DUBs), mostly belonging to the CA-clan of cysteine proteases, and ubiquitin-like proteases (ULPs), belonging to the CE-clan proteases.
View Article and Find Full Text PDFJ Struct Biol X
December 2024
Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States.
Clostripain secreted from is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings.
View Article and Find Full Text PDFPathogens
January 2024
Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico.
is the causative agent of trichomoniasis, the most prevalent nonviral, neglected sexually transmitted disease worldwide. has one of the largest degradomes among unicellular parasites. Cysteine peptidases (CPs) are the most abundant peptidases, constituting 50% of the degradome.
View Article and Find Full Text PDFClostripain secreted from is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2023
Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil; Technological Research Center, University of Mogi das Cruzes, Av Dr. Cândido Xavier de Almeida e Souza, 200, 08780-991, Mogi das Cruzes, Brazil. Electronic address:
Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!