Cutaneous wound healing is orchestrated by a number of physiological pathways that ultimately lead to reformation of skin integrity and the production of functional scar tissue. The remodeling of a wound is significantly affected by matrix metalloproteinases (MMPs), which act to control the degradation of the extracellular matrix (ECM). Regulation of MMPs is imperative for wound healing as excessive levels of MMPs can lead to disproportionate destruction of the wound ECM compared to ECM deposition. In addition to human MMPs, bacterial proteases have been found to be influential in tissue breakdown and, as such, have a role to play in the healing of infected wounds. For example, the zinc-metalloproteinase, elastase, produced by Pseudomonas aeruginosa, induces degradation of fibroblast proteins and proteoglycans in chronic wounds and has also been shown to degrade host immune cell mediators. Microbial extracellular enzymes have also been shown to degrade human wound fluid and inhibit fibroblast cell growth. It is now being acknowledged that host and bacterial MMPs may act synergistically to cause tissue breakdown within the wound bed. Several studies have suggested that bacterial-derived secreted proteases may act to up-regulate the levels of MMPs produced by the host cells. Together, these findings indicate that bacterial phenotype in terms of protease producing potential of bacteria should be taken into consideration during diagnostic and clinical intervention of infected wound management. Furthermore, both host MMPs and those derived from infecting bacteria need to be targeted in order to increase the healing capacity of the injured tissue. The aim of this review is to investigate the evidence suggestive of a relationship between unregulated levels of both host and bacterial proteases and delayed wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1524-475X.2012.00763.xDOI Listing

Publication Analysis

Top Keywords

wound healing
16
host bacterial
12
bacterial proteases
12
wound
9
chronic wounds
8
levels host
8
levels mmps
8
tissue breakdown
8
mmps
7
host
6

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.

View Article and Find Full Text PDF

Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care.

Trends Biotechnol

January 2025

Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!