Regulating the regulator: MicF RNA controls expression of the global regulator Lrp.

Mol Microbiol

Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook, NY 11794-5222, USA.

Published: May 2012

Studies on the regulatory RNA MicF in Enterobacteriaceae reveal a pivotal role in gene regulation. Multiple target gene mRNAs were identified and, importantly, MicF RNA regulates the expression of the global regulatory gene lrp (Holmqvist et al., 2012; Corcoran et al., 2012). Thus MicF RNA is a central factor in a regulatory network that regulates bacterial cell physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2012.08030.xDOI Listing

Publication Analysis

Top Keywords

micf rna
12
expression global
8
regulating regulator
4
micf
4
regulator micf
4
rna
4
rna controls
4
controls expression
4
global regulator
4
regulator lrp
4

Similar Publications

Small regulatory RNAs (sRNA) have been shown to play a large role in the management of stress responses in and other bacteria. Upon fluctuations in nutrient availability and exposure to antimicrobials and superoxide-generating agents, the MicF sRNA in has been shown to regulate a small set of genes involved in the management of membrane permeability. Currently, it is unknown whether MicF acts on other processes to mediate the response to these agents.

View Article and Find Full Text PDF

Small regulatory RNAs (sRNA) have been shown to play a large role in the management of stress responses in and other bacteria. sRNAs act post-transcriptionally on target mRNA through an imperfect base pairing mechanism to regulate downstream protein expression. The imperfect base pairing allows a single sRNA to bind and regulate a variety mRNA targets which can form intricate regulatory networks that connect different physiological processes for the cell's response.

View Article and Find Full Text PDF

Role of the Bacterial Amyloid-like Hfq in Fluoroquinolone Fluxes.

Microorganisms

December 2023

Laboratoire Léon Brillouin LLB, UMR12 CEA CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France.

Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq.

View Article and Find Full Text PDF

Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells, including antibiotic resistance and virulence genes, through base-pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits the permeability of antibiotics. Here we devised a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF.

View Article and Find Full Text PDF

Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells including antibiotic resistance and virulence genes through base pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits permeability of antibiotics. Here, we devise a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!