Context: Aliphatic alcohols present in illegally produced spirits in a large number of low and middle income countries have been implicated in the etiology of chronic liver disease and cirrhosis. Previous studies have confirmed that chronic alcoholism can lead to increased susceptibility to infectious diseases. Reduced superoxide-anion (O(2)·(-)) production by granulocytes could provide a mechanism by which antimicrobial defense is impaired in alcoholics. In vitro experiments have also demonstrated that ethanol can inhibit granulocyte O(2)·(-) generation. Aliphatic alcohols consumed as contaminants of illicit spirits may also influence O(2)·(-) production thereby contributing to a decrease in microbicidal activity.
Objective: The aim of this study was to investigate this possibility. It measured the O(2)·(-) production by human granulocytes following treatment of the cells with aliphatic alcohol contaminants found in illicit spirits.
Materials And Methods: Granulocytes were isolated from human buffy coats with centrifugal elutriation and then treated with individual aliphatic alcohols and their mixture. The O(2)·(-) production was stimulated with phorbol-12-13-dibutyrate and N-formyl-methionyl-leucyl-phenylalanine (FMLP) and measured by superoxide dismutase inhibitable reduction of ferricytochrome c.
Results: Aliphatic alcohols of illegally produced spirits inhibited the FMLP-induced O(2)·(-) production in a concentration dependent manner. They suppressed O(2)·(-) generation at 2.5-40 times lower concentrations when combined than when tested individually.
Discussion And Conclusion: Aliphatic alcohols found in illegally produced spirits can inhibit FMLP-induced O(2)·(-) production by granulocytes in a concentration-dependent manner. Due to their synergistic effects, it is possible that, in combination with ethanol, they may inhibit O(2)·(-) formation in heavy episodic drinkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08923973.2012.663387 | DOI Listing |
ACS Catal
January 2025
Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg 93040, Germany.
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Yunnan University, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, East Outer Ring Road, 650500, Kunming, CHINA.
The reduction of carboxylic esters to aldehydes and alcohols is a fundamental functional group transformation in chemistry. However, the inertness of carbonyl group and the instability of ketyl radical anion intermediate impede the reduction of carboxylic esters via photochemical strategy. Herein, we described the reduction of aliphatic carboxylic esters with synergistic dual photocatalysis via phenolate-catalyzed single electron transfer process and thiol-catalyzed hydrogen atom transfer process.
View Article and Find Full Text PDFACS Omega
January 2025
Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
In this work, two general equations were proposed to express the nonlinear and linear changes in physicochemical properties of aliphatic alcohols, involving boiling point, refractive index, critical temperature, critical volume, and so on. The two general equations all are expressed with the same six molecular descriptors. The results show that the linear and nonlinear change properties of aliphatic alcohols have good correlations with the same six molecular descriptors.
View Article and Find Full Text PDFBMC Chem
January 2025
The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
Org Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!