High precision densitometry was applied to study the hydration of proteins. The hydration process was analyzed by the simultaneous monitoring of the excess partial volumes of water and the proteins in the entire range of water content. Five unrelated proteins (lysozyme, chymotrypsinogen A, ovalbumin, human serum albumin, and β-lactoglobulin) were used as models. The obtained data were compared with the excess partial enthalpies of water and the proteins. It was shown that the excess partial quantities are very sensitive to the changes in the state of water and proteins. At the lowest water weight fractions (w(1)), the changes of the excess functions can mainly be attributed to water addition. A transition from the glassy to the flexible state of the proteins is accompanied by significant changes in the excess partial quantities of water and the proteins. This transition appears at a water weight fraction of 0.06 when charged groups of proteins are covered. Excess partial quantities reach their fully hydrated values at w(1) > 0.5 when coverage of both polar and weakly interacting surface elements is complete. At the highest water contents, water addition has no significant effect on the excess quantities. At w(1) > 0.5, changes in the excess functions can solely be attributed to changes in the state of the proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp300726pDOI Listing

Publication Analysis

Top Keywords

excess partial
24
water proteins
20
partial quantities
12
changes excess
12
water
11
proteins
10
excess
9
hydration proteins
8
proteins excess
8
partial volumes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!