We present a new and efficient NMR method, BLUU-Tramp (Biophysics Laboratory University of Udine temperature ramp), for the collection of hydrogen-deuterium exchange experiments as a function of time and temperature for small and medium-sized proteins. Exchange rates can be determined to extract the underlying thermodynamic equilibrium or kinetic parameters by sampling hundreds of points over a virtually continuous temperature ramp. Data are acquired in a single experimental session that lasts some 20-60 h, depending on the thermal stability of the protein. Subsequent analysis provides a complete thermodynamic description of the protein energy landscape. The global thermal unfolding process and the partial or local structure opening events can be fully determined at the single-residue resolution level. The proposed approach is shown to work successfully with the amyloidogenic protein β(2)-microglobulin. With (15)N-labeling, the unfolding landscape of a protein can also be studied in the presence of other unlabeled proteins and, in general, with ligands or cosolutes or in physiological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja209004qDOI Listing

Publication Analysis

Top Keywords

energy landscape
8
temperature ramp
8
determining energy
4
landscape proteins
4
proteins fast
4
fast isotope
4
isotope exchange
4
exchange nmr
4
nmr approach
4
approach efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!