We investigate the cation rotational dynamics of a room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim]PF(6)) in its three crystalline states by (1)H NMR spectroscopy. Spin-lattice and spin-spin relaxation time (T(1) and T(2), respectively) measurements as a function of temperature confirm the presence of three polymorphic crystals of [C(4)mim]PF(6): crystals α, β, and γ, which we previously discovered using Raman spectroscopy and calorimetry. Second moment calculations of (1)H NMR spectra reveal that certain segmental motions of the butyl group in addition to the rapid rotation of the two methyl groups in the cation occur in all the crystals. The trend in the mobility of the segmental motions is γ < β ≤ α, which is consistent with the strength of cation-anion interactions (or crystal packing density) estimated from high-frequency Raman scattering experiments. T(1) measurements demonstrate two types of rotational motions on the nanosecond time scale in all three crystals: fast and slow motions. The three crystals have similar activation energies of 12.5-15.1 kJ mol(-1) for the fast motion, which is assigned to the rotation of the methyl group at the terminal of the butyl group. These observed activation energies were consistent with that estimated by quantum chemical calculations in the gas phase (11.9 kJ mol(-1)). In contrast, the slow motions of crystals α and γ are attributed to different segmental motions of the butyl group and that of crystal β to either a little segmental motion or a certain PF(6)(-) rotational motion. These nanosecond rotational motions obtained from the T(1) measurements do not appear to be affected by crystal packing density because local interactions in the crystalline state rather than packing density govern such nanosecond motions. With respect to the segmental motions, the mobility is likely to change significantly with the conformation of the butyl group. On the basis of these findings, crystal γ, which is the only crystalline phase previously determined using single-crystal X-ray diffraction, is considered to be the most stable phase because of the slowest segmental motions and the strongest cation-anion interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp300636s | DOI Listing |
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Shanghai Film Academy, Shanghai University, Shanghai 200072, China.
The advancement of neural radiance fields (NeRFs) has facilitated the high-quality 3D reconstruction of complex scenes. However, for most NeRFs, reconstructing 3D tissues from endoscopy images poses significant challenges due to the occlusion of soft tissue regions by invalid pixels, deformations in soft tissue, and poor image quality, which severely limits their application in endoscopic scenarios. To address the above issues, we propose a novel framework to reconstruct high-fidelity soft tissue scenes from low-quality endoscopic images.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Cognitive Systems Lab, University of Bremen, 28359 Bremen, Germany.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.
Portable monitoring devices based on Inertial Measurement Units (IMUs) have the potential to serve as quantitative assessments of human movement. This article proposes a new method to identify the optimal placements of the IMUs and quantify the smoothness of the gait. First, it identifies gait events: foot-strike (FS) and foot-off (FO).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Sport Science, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria.
Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!