Natural polarizability and flexibility via explicit valency: the case of water.

J Chem Phys

Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.

Published: February 2012

As the dominant physiological solvent, water drives the folding of biological macromolecules, influences conformational changes, determines the ionization states of surface groups, actively participates in catalytic events, and provides "wires" for long-range proton transfer. Elucidation of all these roles calls for atomistic simulations. However, currently available methods do not lend themselves to efficient simulation of proton transfer events, or even polarizability and flexibility. Here, we report that an explicit account of valency can provide a unified description for the polarizability, flexibility, and dissociability of water in one intuitive and efficient setting. We call this approach LEWIS, after the chemical theory that inspires the use of valence electron pairs. In this paper, we provide details of the method, the choice of the training set, and predictions for the neat ambient liquid, with emphasis on structure, dynamics, and polarization. LEWIS water provides a good description of bulk properties, and dipolar and quadrupolar responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306436PMC
http://dx.doi.org/10.1063/1.3688228DOI Listing

Publication Analysis

Top Keywords

polarizability flexibility
12
proton transfer
8
natural polarizability
4
flexibility explicit
4
explicit valency
4
valency case
4
water
4
case water
4
water dominant
4
dominant physiological
4

Similar Publications

Atomistic Multiscale Modeling of Colloidal Plasmonic Nanoparticles.

ACS Phys Chem Au

November 2024

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.

A novel fully atomistic multiscale classical approach to model the optical response of solvated real-size plasmonic nanoparticles (NPs) is presented. The model is based on the coupling of the Frequency Dependent Fluctuating Charges and Fluctuating Dipoles (ωFQFμ), specifically designed to describe plasmonic substrates, and the polarizable Fluctuating Charges (FQ) classical force field to model the solvating environment. The resulting ωFQFμ/FQ approach accounts for the interactions between the radiation and the NP, as well as with the surrounding solvent molecules, by incorporating mutual interactions between the plasmonic substrate and solvent.

View Article and Find Full Text PDF

In the context of chiral π-conjugated materials, the use of enantiopure alkylthio appendages represents a valid alternative to conventional alkoxy groups: sulphur atom is bigger and more electron-rich than oxygen, thus allowing for higher polarizability, greater flexibility, larger bulkiness and lower structural anisotropy. In light of these considerations, here we report two new chiral alkylthio-decorated 1,4-phenylene/thiophene dyes, obtained by simple synthetic strategies involving Pd-catalyzed cross-coupling protocols, looking for strong non-reciprocal chiroptical features in thin films. In particular, for the chiral alkylthio-decorated 1,4-phenylene-bis(thiophenylpropynone) (Thio-PTPO) dye, which proved to be the most promising for our purpose, a detailed investigation in thin films was carried out, involving optical and chiroptical spectroscopies in absorption and emission, as well as optical microscopy techniques.

View Article and Find Full Text PDF

This study pioneered an eco-friendly approach for reutilizing Ground-granulated blast furnace slag (GGBFS) in paper production. This investigation is the first study focusing on the usage of paper production that presents both a new usage area of GGBFS and also a new sight. So, it can contribute to save the trees.

View Article and Find Full Text PDF

Conformational Changes and Coordination Stability of Flexible Tripeptides During Ni(II)-mediated Self-assembly.

Chempluschem

September 2024

Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.

The rational design of artificial supramolecular structures with specific properties and functions hinges the comprehensive understanding of the coordination and noncovalent interactions driving self-assembly. Herein, the self-assembly of supramolecular systems through octahedral coordination between Ni(II) ions and a flexible tripeptide was theoretically investigated using quantum chemical calculations. These calculations utilized the B3LYP functional with the polarizable continuum model.

View Article and Find Full Text PDF

The successful design of solid-state photo- and electrochemical devices depends on the careful engineering of point defects in solid-state ion conductors. Characterization of point defects is critical to these efforts, but the best-developed techniques are difficult and time-consuming. Raman spectroscopy─with its exceptional speed, flexibility, and accessibility─is a promising alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!