The frequency-dependent dielectric constant, shear and adiabatic bulk moduli, longitudinal thermal expansion coefficient, and longitudinal specific heat have been measured for two van der Waals glass-forming liquids, tetramethyl-tetraphenyl-trisiloxane (DC704) and 5-polyphenyl-4-ether. Within the experimental uncertainties the loss-peak frequencies of the measured response functions have identical temperature dependence over a range of temperatures, for which the Maxwell relaxation time varies more than nine orders of magnitude. The time scales are ordered from fastest to slowest as follows: Shear modulus, adiabatic bulk modulus, dielectric constant, longitudinal thermal expansion coefficient, and longitudinal specific heat. The ordering is discussed in light of the recent conjecture that van der Waals liquids are strongly correlating, i.e., approximate single-parameter liquids.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3690083DOI Listing

Publication Analysis

Top Keywords

identical temperature
8
temperature dependence
8
time scales
8
glass-forming liquids
8
dielectric constant
8
adiabatic bulk
8
longitudinal thermal
8
thermal expansion
8
expansion coefficient
8
coefficient longitudinal
8

Similar Publications

Motif-driven dynamics and intermediates during unfolding of multi-domain BphC enzyme.

J Chem Phys

January 2025

Research and Development Center, Beijing Genetech Pharmaceutical Co., Ltd., Beijing 102200, People's Republic of China.

Understanding the folding mechanisms of multi-domain proteins is crucial for gaining insights into protein folding dynamics. The BphC enzyme, a key player in the degradation of polychlorinated biphenyls consists of eight identical subunits, each containing two domains, with each domain comprising two "βαβββ" motifs. In this study, we employed high-temperature molecular dynamics simulations to systematically analyze the unfolding dynamics of a BphC subunit.

View Article and Find Full Text PDF

The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.

View Article and Find Full Text PDF

We describe a novel Malassezia species named Malassezia polysorbatinonusus, isolated from a Japanese patient with seborrheic dermatitis. The internal transcribed spacer (ITS) region of the isolate (LSEM 4845) were only 94.7% identical to those of M.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. The number of cases is increasing among young women, and consequently, breast reconstructions are performed more often. Postoperative complications, wound healing, and the quality of scars influence the final cosmetic outcomes.

View Article and Find Full Text PDF

This study investigates the combustion characteristics and critical thermodynamic conditions for the ignition of TC4 and TC17 alloys under high-speed friction conditions. The results indicate that, under identical rubbing conditions, both the critical pressure and the ignition temperature of the TC17 alloy are higher than those of the TC4 alloy. The critical ignition conditions for both alloys increase with thickness, while they decrease with increasing rotational speed, oxygen concentration, and oxygen pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!