Extensive use of pharmaceuticals as human and veterinary medication raises concerns for their adverse effects on non-target organisms. The purpose of this study was to employ multiple linear regression (MLR) to predict the toxicities of a diverse set of pharmaceuticals to fish. The descriptor pool consisted of about 1500 descriptors calculated using Dragon 5.4, Spartan 06 and Codessa 2.2 software. Descriptor selection was made by the heuristic method available in Codessa 2.2. The data set was divided into training and test sets using Kohonen networks. The training set contained approximately 65% of the compounds of the full data set (99 compounds). The training set model contained eight descriptors from all dimensions, all of which were obtained from Dragon 5.4. The statistical parameters of the model for the training set are R(2 )= 0.664, F = 13.588, and R(cv)(2) (LOO) = 0.542 while it achieves R(2 )= 0.605 for the test set. The training, test and external sets have no response outliers considering the standardized residual greater than three. The external validation of the model was made with a set of pharmaceuticals obtained from several databases. The R(pred)(2) is 0.777, reflecting a relatively good predictive power for the external set.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1062936X.2012.657678DOI Listing

Publication Analysis

Top Keywords

training set
12
set
9
pharmaceuticals fish
8
set pharmaceuticals
8
data set
8
training test
8
training
5
qstr modelling
4
modelling acute
4
acute toxicity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!