Vertical GaN-based light-emitting diodes (LEDs) were fabricated with a Si substrate using the wafer-bonding technique. Lapping and dry-etching processes were performed for thinning the sapphire substrate instead of removing this substrate using the laser lift-off technique and the thinning process associated with the wafer-bonding technique to feature LEDs with a sapphire-face-up structure and vertical conduction property. Compared with conventional lateral GaN/sapphire-based LEDs, GaN/Si-based vertical LEDs exhibit higher light output power and less power degradation at a high driving current, which could be attributed to the fact that vertical LEDs behave in a manner similar to flip-chip GaN/sapphire LEDs with excellent heat conduction. In addition, with an injection current of 350 mA, the output power (or forward voltage) of fabricated vertical LEDs can be enhanced (or reduced) by a magnitude of 60% (or 5%) compared with conventional GaN/sapphire-based LEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/oe.20.00a119 | DOI Listing |
Photochem Photobiol
January 2025
Laboratory of Lasers, Faculdade São Leopoldo Mandic, Campinas, Brazil.
This study investigated the effects of transcranial photobiomodulation (t-PBM) on para-athletes' manual dexterity and intralimbal coordination. Six para-athletes from a Boccia Team participated. t-PBM was administered using a LED helmet with 204 LEDs (660 and 850 nm) emitting 10 mW each, delivering 9 J/cm per LED during 15-min sessions three times a week.
View Article and Find Full Text PDFAll-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Physics and Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Korea.
One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).
View Article and Find Full Text PDFAdv Mater
January 2025
School of Electronic Engineering, Soongsil University, Seoul, 06938, South Korea.
Recent advances in mass transfer technology are expected to bring next-generation micro light-emitting diodes (µLED) displays into reality, although reliable integration of the active-matrix backplane with the transferred µLEDs remains as a challenge. Here, the µLED display technology is innovated by demonstrating pixel circuit-integrated micro-LEDs (PIMLEDs) and integrating them onto a transparent glass substrate. The PIMLED comprises of low-temperature poly-silicon transistors and GaN µLED.
View Article and Find Full Text PDFSmall Methods
December 2024
Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Infrared (IR) emitters have drawn considerable attention for applications in deep-tissue imaging, optical communication, and thermal sensing. While III-V and II-VI semiconductors are traditionally used in these emitters, their reliance on complex epitaxial growth to overcome lattice mismatch and thermal expansion challenges leads to intricate device structures and limits their integrability. In contrast, 2D materials provide a more flexible solution, offering diverse optical bandgaps and the ability to be vertically restacked in arbitrary crystal orientations to form complex van der Waals (vdW) heterostructures, which can be further integrated onto diverse device platforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!