Introduction: The Lower Extremity Functional Scale was translated into Canadian French in 2006; the translated version was titled Échelle fonctionnelle des membres inférieurs (EFMI). The construct validity and reliability of the EFMI have not been examined.
Objective: To examine the test-retest reliability, internal consistency, and construct validity of the EFMI.
Methodology: Thirty-four participants who had undergone surgery or had an injury to the lower limb were asked to fill out a demographic questionnaire and complete the EFMI after their initial assessment while hospitalized. They completed the EFMI a second time within 72 hours. The intra-class correlation coefficient (ICC) and the kappa coefficient were chosen to examine the test-retest reliability of the EFMI, and Cronbach's alpha coefficient was calculated to assess internal consistency. A factor analysis was conducted to examine construct validity by determining the number of constructs and their meanings.
Results: The ICC value was 0.92 (95% CI: 0.88-0.96), and Cronbach's alpha was 0.95 (95% CI: 0.91-0.99). The factor analysis revealed that all elements of the EFMI share one principal construct.
Conclusion: The results demonstrate that the French-Canadian version of the EFMI is a unidimensional tool with excellent test-retest reliability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076912 | PMC |
http://dx.doi.org/10.3138/ptc.2010-12F | DOI Listing |
Metab Brain Dis
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.
Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.
Discov Oncol
January 2025
Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
Gastric cancer (GC), a prevalent malignancy worldwide, encompasses a multitude of biological processes in its progression. Recently, ferroptosis, a novel mode of cell demise, has become a focal point in cancer research. The microenvironment of gastric cancer is composed of diverse cell populations, yet the specific gene expression profiles and their association with ferroptosis are not well understood.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.
Purpose: Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumors with a 5-year survival rate of less than 20%. Therefore, it is crucial to elucidate the molecular mechanisms of ICC. Recently, the advance of high-throughput chromosome conformation capture (Hi-C) technology help us look insight into the three-dimensional (3D) genome structure variation during tumorigenesis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
Infectious diabetic wounds pose an arduous threat to contemporary healthcare. The combination of refractory biofilms, persistent inflammation, and retarded angiogenesis can procure non-unions and life-threatening complications, calling for advanced therapeutics potent to orchestrate anti-infective effectiveness, benign biocompatibility, pro-reparative immunomodulation, and angiogenic regeneration. Herein, embracing the emergent "living bacterial therapy" paradigm, a designer probiotic-in-hydrogel wound dressing platform is demonstrated.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!