Amyloid β (Aβ) peptides, the main pathological species associated with Alzheimer's disease (AD), disturb intracellular calcium homeostasis, which in turn activates the calcium-dependent phosphatase calcineurin (CaN). CaN activation induced by Aβ leads to pathological morphological changes in neurons, and overexpression of constitutively active calcineurin is sufficient to generate a similar phenotype, even without Aβ. Here, we tested the hypothesis that calcineurin mediates neurodegenerative effects via activation of the nuclear transcription factor of activated T-cells (NFAT). We found that both spine loss and dendritic branching simplification induced by Aβ exposure were mimicked by constitutively active NFAT, and abolished when NFAT activation was blocked using the genetically encoded inhibitor VIVIT. When VIVIT was specifically addressed to the nucleus, identical beneficial effects were observed, thus enforcing the role of NFAT transcriptional activity in Aβ-related neurotoxicity. In vivo, when VIVIT or its nuclear counterpart were overexpressed in a transgenic model of Alzheimer's disease via a gene therapy approach, the spine loss and neuritic abnormalities observed in the vicinity of amyloid plaques were blocked. Overall, these results suggest that NFAT/calcineurin transcriptional cascades contribute to Aβ synaptotoxicity, and may provide a new specific set of pathways for neuroprotective strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296329 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.6439-11.2012 | DOI Listing |
Eur Arch Psychiatry Clin Neurosci
December 2024
Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) gene polymorphism (rs638405) has been widely reported to be associated with Alzheimer's disease (AD) risk. However, studies on the relationship between BACE1 gene polymorphism (rs638405), brain volume, and cognition in AD patients remain scarce. To investigate the effect of genetic polymorphism in BACE1 on gray matter volume (GMV) and cognition in AD, this study recruited 111 cognitively unimpaired (CU) controls and 144 AD patients.
View Article and Find Full Text PDFSci Rep
December 2024
Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.
Many lipid biomarkers of stroke have been identified, but the lipid metabolism in elderly patients with leukoaraiosis remains poorly understood. This study aims to explore lipid metabolic processes in stroke among leukoaraiosis patients, which could provide valuable insights for guiding future antithrombotic therapy. In a cohort of 215 individuals undergoing MRI, 13 stroke patients were matched with controls, and 48 stroke patients with leukoaraiosis were matched with 40 leukoaraiosis patients.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurology, Union Hospital of Jilin University, Changchun, 130000, China.
Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.
View Article and Find Full Text PDFJ Neurol
December 2024
Department of Neurosciences Rita Levi Montalcini, University of Turin, Turin, Italy.
Introduction: Non-motor symptoms (NMS) in Parkinson's disease (PD) can fluctuate daily, impacting patient quality of life. The Non-Motor Fluctuation Assessment (NoMoFA) Questionnaire, a recently validated tool, quantifies NMS fluctuations during ON- and OFF-medication states. Our study aimed to validate the Italian version of NoMoFA, comparing its results to the original validation and further exploring its clinimetric properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!